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Detection of Synthetic Singularities in Natural Textures and
Mammographies using Nearly Spherical Wavelets and filters
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The efficiency of defect detection for filters and wavelets is a fundamental problem in image processing. It has recently been
shown that natural symmetries such as rotational invariance is of primary importance to solve this problem [1, 2]. We
herewith investigate the detection of tunable singularities in natural textures from the Brodatz database and in parts of
mammographies. We compare several filters and show that the efficiency of pointwise defect detection is intimately related
to their rotational invariance property.
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1. INTRODUCTION

Image analysis is a very active field of research in computer
science. Particularly, defect detection is the subject of
numerous studies such as in the case of medical images for
instance. It is well known that wavelet analysis is a very useful
tool for extracting the singular part of a signal [3, 4]. There
are however numerous types of images and equivalently
numerous types of filters which can be used to analyse them.
If we are interested by the optimization, either in time or in
quality, of the defect detection, a natural question arises: how
can we choose the appropriate filter? In practice, specific types
of images (glasses, tiles, etc) can be well analysed by dedicated
algorithms. Here we are more interested by a theoretical
approach based on general properties of images or more
precisely its symmetries. A local defect has to remain a defect
even if we rotate the image for instance.

The regularity of wavelets has, from a long time, been
one of the main criteria for building wavelet families,
motivated for example by the above experiments. However,
in [5], while studying the texture segmentation using
wavelets, M. Unser found that the number of null moments
(characterizing one aspect of the regularity) alone was not
sufficient for choosing a wavelet. The most regular wavelet
was not necessarily the best at distinguishing textures.

Another possibility to characterize the regularity of
wavelets is through their Sobolev exponent [6]. In [7] and
[8], it was shown that, among the Matzinger wavelets, which
are good with respect to Sobolev regularity, the detection
was improved with more regular wavelets. In [9],
orthonormal wavelets of various lengths were optimized
numerically for the Sobolev regularity.

Most of the wavelets families have mathematical
properties which take their roots in some modeling of the
signal. Either the signal is assumed locally polynomial
(number of null moments) or lie in a smooth space (Sobolev
space). In reality, very few signals follow some mathematical

model. This is why, in our opinion, a more intuitive
understanding of the 2D signal may provide better results.

The choice of the best separable wavelet basis function
for the extraction of image information has been addressed
previously [10, 11] and particularly for singularity detection
based on local sphericity [1, 2, 3, 4]. This new criterion
proved useful for creating new wavelet filters: the nearly
isotropic wavelets.

These new wavelets were compared to the Gabor filters
and the Mexican hat filters in the aim to correlate their level
of sphericity and their efficiency of detection for a rather
large class of artificial defects represented by cones in
synthetic images, like in Fig. 1. The conclusion of this study
is that a more spherical filter detects the singularity defects
with more efficiency, particularly in the case of the synthetic
images with a high roughness background. An image with a
larger roughness background seems more textured than
another with a lower roughness background. The reason for
using synthetic images for detection tests is the easy control
of the roughness of the background of the images, which
can be modified with a single parameter.

The practical interest of this study is the detection of
small defects in medical images, like mam mographies, for
example. Indeed, a synthetic image with a high roughness
background appears like a mammography, and the inserted
conic defects appear like microcalcifications. From a medical
point of view, it is very important to detect precociously these
anomalies in order to treat the disease in its early phase.
This is why we apply our detection methodology on a set of
mammography parts.

An other application of this study can be the detection
of small defects in textured images, as those captured from
cameras along a production line in industry. This leads us to
test our method of defect detection on natural textured
images of reference. The Brodatz images1 have been selected
for our test.
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The first experiment developed in this work concerns
the detection of controlled singularities in the Brodatz
textures and in parts of mammographies. To further
investigate the problem of defect detection, it can be
interesting to evaluate the importance of the singularity at
the top of the cone. To this end, we change the defect model
and use a cone with its top truncated. This is the object of
the second experiment.

This paper is organized as follows. For completeness
we will first sketch the wavelets and filters used in our
experiments. Next we will brifly explain the two kinds of
defects and the method used to determine the efficiency of
filter detection. Finally, we will present the experiments and
the obtained results.

2. INVESTIGATED WAVELETS AND LTERS

The choice of a wavelet basis for defect detection is not an
easy task. To work with 2D images, one usually takes
wavelets designed for one dimensional processing and just
uses the tensor product. This enables to take advantage of
all the knowledge of the properties of wavelets accumulated
in one dimension. Such properties are for example the
number of vanishing moments, good frequency localization,
short impulse response.

In the present paper, we compare the ability to detect
narrow singularities in images on the basis of general
symmetries of the defects such as their rotation invariance.
This problem leads naturally to the study of Mexican hat
and Gabor filters. We add to this piece of work a separable
“nearly” spherical wavelet defined as follows.

A filter f(x, y) is isotropic if it verifies the following
equation:

2 2 2 2
1 2 1 2 1 1 2 2 1 1 2 2, , , : ( , ) ( , )x x y y x y x y f x y f x y� � � � � � ��

We deal here with discrete filters. We can therefore not
verify this equation as it is because only few points of the
plane will satisfy this relation. Since most, if not all, of the
filters we will examine will not be truly isotropic, we must
find another criteria to classify the filters.

The wavelets bases generally used in image processing
are extension in two dimensions of wavelet defined in one
dimension. The equation below depicts a filter F as an
extension in 2 dimensions of the filter G in one dimension:

F(x, y) = G(x)G(y)
F is then called a separable filter.

We can use this property to search for a better strategy
to classify wavelet as more or less rotation invariant. We
want F to be rotation invariant. That translates to:
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It follows that the only possible G is of the form ab.x2.

The Gaussian 2 /. xk e � is a possible solution for G but this is

not an orthonormal wavelet. Note that k is a constant used
to normalize the function. To assess the sphericity of a
function, we can thus convolve it with a Gaussian. The
maximum absolute value of this convolution will be an
indication of the best match between the function and the
Gaussian. The � of the Gaussian will be tuned to give the
highest possible match. To give comparable results, we must
normalize both the function to be evaluated and the Gaussian.
The highest score we can then reach is 1. The measure of
the sphericity of the filters will thus be based on the similarity
these filters have with a Gaussian, the only separable filter
which is isotropic.

To be complete, our method to construct new separable
spherical wavelets is described in appendix A.

2.1 Gabor filters

The first examined family of filters is the Gabor filters. These
filters are chosen in this work because they are often
investigated in the texture analysis domain. Several
researches have dealt with using the Gabor filters to improve
the texture classication [10, 11], segmentation [12], features
extraction [13], defect detection [14], etc. The main
advantage of the Gabor filters is that they are easily tunable
in scale and orientation.

The bank of filters can be obtained by dilation and
rotation of a mother function which has the following form :

2 2

2 2

1 1
( , ) exp cos (2 ).

2 2x y x y

x y
x y Wx

� �� �
� � � �� �� �� ��� � � �� �� �� �

� (1)

where W is the modulation frequency of the filter and �
x
, �

y

define the Gaussian envelope size.

2.2 Mexican Hat Filters

The second examined family of filters is the Mexican hat
filters. Several applications are based on methods using
Mexican hat filters like texture classication [15] or pattern
recognition [16, 17]. The Mexican hat function is defined
as follows:
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We must note that these filters have the disadvantage that
they are not separable. The computational time required to
construct these filters is thus more important than for
separable filters. This factor is not taken into account for
our experiments, because it is not the aim of the study.

2.3 Nearly Isotropic Wavelets

The nearly isotropic wavelets have been specially developed
to detect singularities [3, 4]. The construction of these
wavelets is based on the optimisation of the sphericity of

Figure 1: Example of synthetic image with controlled defects
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the wavelet or the scaling function. The parametrization of
the wavelets is achieved using the algorithm developed by
Sherlock and Monro [18]. This can generate any kind of
orthonormal wavelets. (N/2–1) parameters are free if the
support width of the wavelet is N. The wavelet filter related
to an isotropic wavelet function is denoted by � and the filter
related to an isotropic scaling function is denoted by �. These
wavelets have a support width of 8 so as to obtain the best
trade-off between the sphericity and the length of the filter.
The details of their construction can be found in [4]. The
scaling functions of these two wavelet filters are represented
in Fig. 2.

In one dimension, we could choose the top of a triangle.
Two possibilities can be used to generalize this to two
dimensions: the tensor product of two 1D functions or the
rotation of the triangle around an axis passing through the
singularity. The second approach was considered, since the
first one introduces two ridges along the axis, so that the
pointwise singularity is at the crossing of two 1D
singularities.

Rotating the triangle around its summit, we get a cone
(we view the images as a profile, the intensity being mapped
to the height of the landscape).

In this section we explain the singularity and truncated
defect detection procedure. First we will describe the kind
of defects we want to detect. Next we will show examples
of images we want to process. Finally we will determine a
measure of efficiency for the detection. We can note that the
method of defect detection used in this work is the same as
used in previous studies [1, 2]. We recapitulate this method
in the following sections.

3.1 Defect Creation

The first step is to detect singularity defects. To do this we
create synthetic defects in the images. The form of the defects
is a cone, which is formulated as follows:
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y
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where R is the radius of the base of the cone and (c
x
, c

y
) the

position of its center.
The radius and the height of the defects can be changed.

We can thus study the influence of the size of the defects on
the efficiency of the detection by modifying the radius. The
limit of the detection can then be determined by varying the
height. As the second step, the cones are truncated at a
percentage of their maximal height and the principle of the
detection is similar to the detection of the cones. Examples
of these two kinds of defects are shown in Fig. 3. Indeed,
the first image (a) corresponds to a singularity defect with a
radius of 100 pixels, the second one (b) to the first defect
with the singularity truncated at 70% of the height, and the
last one (c) to the first defect with the singularity truncated
at 40% of the height. The corresponding 3-d views of these
defects are shown respectively in (d), (e) and (f).

3.2 Measure of Efficiency

Let us suppose that we have a clear image I which is a texture
from the Brodatz database or a part of mammography. A
sample texture images can be found in Fig. 4 from the
Brodatz database and in Fig. 5 for mammography parts. Let
us also suppose that we have an image containing singularity
defects denoted D.

The tool we will use throughout this paper to evaluate
the efficiency to detect singularities is the less intense defect,
i.e. smallest intensity of the defect, we can segment from
the background with a given probability of failure. To do

Figure 2: Scaling function of the wavelet lters

(a) �

(b) �

One of the possible applications of such a wavelet filter
concerns medical image analysis, particularly the detection
of clustered microcalcifications in mammograms [3, 8].

3. SINGULARITY AND TRUNCATED DEFECTS
DETECTION

Our aim of using wavelet is to detect pointwise singularities.
Since we do not assume some mathematical properties of
the wavelet, we will choose the most simple defect: the signal
is continuous while its first derivative is not.
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that, we first transform the original texture on several scales
of the wavelet transform. We use a redundant transform to
achieve better results. We can then fix a threshold given the
acceptance rate of false positive. Let us note � this threshold.
� depends on the texture, the wavelet base and the level of
decomposition.

We then randomly add some defects. Of course, we
record the position of these defects so as to be able to
determine if the defect is detected or not. We say a defect is
detected if the coefficient of the wavelet transform near the
position of the defect is higher than �. We define “near” as
being at most at one pixel from the position of the defect.
This is to ensure we do not underestimate the wavelet for a
small error in the localisation of the defect. We then adjust
the heights of the defects so that the given error rate is
achieved, in introducing a parameter � which multiplies the
image D. In summary, the procedure to compute � for a
given background is

• F = background image,
• D = set of 10 randomly positionned defects,
• Compute � such that the wavelet can detect 9

defects on F + �D with a false positive rate of �.
A value of � close to 1 corresponds to a final image

I + �D where the defects can be easily distinguished. An
example of I, D and I + �D can be found in Fig. 6 with the
texture D1 from the Brodatz database, 10 conic defects with
a radius equal to 5 pixels and � equal to 0.3. An other
example with a mammography part is shown in Fig. 7.

The problem is to detect signicant singularities. The
wavelet transform gives maximum response near the
singularity at fine scales. Though, the noise is usually much
more present at the finest scales. Therefore, our algorithm
proceeds as follows. First, the wavelet transform is

performed through several scales (here 4). To avoid the
translation variance of the wavelet transform, the
overcomplete transformation is used, i.e. no decimation is
performed between scales. Then, given a threshold, the image
is segmented. So, on the segmented image, we count a good
detection if, near the location of the inserted defect (known,
since artificially added), the wavelet transform is above the
threshold.

Figure 3: Example of singularity and small sized defects, and their 3-d representation

(d) 3-d view of (a) (d) 3-d view of (b) (d) 3-d view of (c)

Figure 4: Sample textured images from the Brodatz database

Figure 5: Sample parts of mammographies
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Of course, the rate of good detection will greatly depend
on the chosen threshold. Working with controlled images, it
is possible to transform the defect free image and set the
threshold such that only a few parasites appear, i.e. only a
few points are falsely detected as singularities.

of the maximal height of the cone. The truncation at 100%
corresponds to the whole cone. We insert 10 defects for each
experiment. The random position of these 10 defects is the
same for all of the 110 Brodatz images, and the other random
position of the defects is also the same for all images of the
second set. The use of 10 defects can be justied since tests
were performed for 5 other positions and similar results were
found for the efficiency of detection of the filters. We are
thus confident that our method at evaluating the efficiency
of detection can be used to compare the filters.

Concerning the Gabor filters, the parameters of Eq. 1
are chosen as follows: the frequency centers W are 0.061,
0.1, 0.163 and 0.265; �

x
 and �

y
 are adapted to obtain a filter

size with a null DC by multiplying them by a scaling factor.
The only parameter to fix for the Mexican hat filters is

��in Eq. 2. The values used for � vary from 1 to 5 and are
chosen according to a geometric progression. 10 intervals
are then created.

The decomposition with the nearly isotropic wavelets
��and � contains four levels, as it was the case in the previous
studies [1, 2, 3].

4.2 Detection of Pointwise Defects

In this section we compare the efficiency of the set of the
examined filters for the detection of singularities in Brodatz
images and in mammography parts. Let us keep in mind the
order of the families of filters according to their sphericity
level. The Mexican hat filters are the most spherical. Then
the nearly isotropic wavelets are slightly less spherical than
the Mexican hat filters. Finally the Gabor filters are the least
spherical. For defects with a radius greater than 2 pixels,
the order of the filters according to their efficiency at
detecting singularities in synthetic images corresponds to
the order of their sphericity measure. We here extend this
study for the Brodatz textures and the mammography parts.

To increase the significance of the results, the
experiment of detection is repeated for five positions of
defects, randomly chosen. To satisfy ourselves that the
comparison of the results can be generalized, a paired Student
test is performed on the results: a first test between the Gabor
and the � results, an other between the � and the � results,
and a last test between the � and the Mexican hat results.
The values of these tests are summarized in table 1(a) for
the set of Brodatz images, for which the critical value is
2.32635 since the confidence level is chosen as 0.01 and
the degree of freedom is equal to 109 (which effectively
corresponds to an infinite degree of freedom). That means
that if a value in the table is lower than –2.32635, the first
filter is better than the second one, and if a value in the table
is greater than 2.32635, the second filter is better than the
first one with great confidence.

Concerning the set of mammography parts, the values
of the paired Student tests are summarized in table 1(b). For
the same confidence level as the Brodatz images and a degree
of freedom equal to 29, the critical value is 2.46202.

Figure 7: Example of mammography part to be ltered

(a) I (b) (c) I + �D with

Defects Dwitharadiuso of 5 pixels = 0.3

Figure 6: Example of Brodatz image to be ltered

(a) I (b) (c) I + �D with

Defects Dwitharadiuso of 3 pixels = 0.2

The best scale is then chosen, that is the scale at which
the number of good detections is the highest while maintaining
the number of parasites below some chosen value.

To summarize, we first process a clean image I so as to
compute the threshold. The accepted parasite fraction is
0.1%. Then, 10 articial defects are produced, giving the
image D. The transform of I + �D gives T. We then compute
the rate of good detection and adjust � such that 9 out of 10
defects are correctly segmented. This gives us the measure
of the smallest defect the wavelet can detect. The transform
can be done at different scales so we take the best scale for
the evaluated wavelet.

This method to determine the value of efficiency of the
detection is the same for both the cones and the truncated
cones.

4. EXPERIMENTS AND RESULTS

In this section we first review the different filters and their
associated parameters. We also determine the size of the
defects to be detected and the method of truncation. We
finally compare all the examined filters.

4.1 Values of the Parameters Defined in the Experiments

The first set of test images is composed of 110 textured
images of size 256 × 256 pixels collected from the Brodatz
database. 30 parts of mammographies constitute the second
set of test images. The inserted singularities in these images
have a radius varying from 1 to 10 pixels. For the truncated
defects, the truncation is performed between 10 and 100%



220 International Journal of Computational Vision and Biomechanics

Table 1
Detection of Pointwise Defects: Paired Student Test on

Each Set of Images

(a) Brodatz textures

Defect Gabor � �
radius � � Mexican hat

1 83.4745 –12.6093 –88.0110

2 62.0286 14.5575 –20.7625

3 38.4730 24.8232 10.9751

4 28.7785 22.4011 7.9366

5 18.4598 22.2813 13.8957

6 14.7884 19.1214 14.9255

7 15.0824 17.0509 12.1155

8 14.2150 19.1356 11.2312

9 11.0677 20.3889 14.5130

10 7.4408 22.6956 18.9155

(b) Parts of mammographies

Defect Gabor � �
radius � � Mexican hat

1 38.2556 16.5524 –35.8688

2 45.7838 13.4464 –3.0051

3 41.9435 15.3969 –1.5875

4 30.4252 20.2203 –6.0870

5 22.0005 18.4412 –3.4675

6 24.3087 11.4936 –4.5371

7 30.5992 8.5238 –7.6913

8 21.5144 8.9753 –9.3811

9 20.1947 12.8953 –8.8334

10 16.3609 14.0923 –5.7940

From table 1(a), we can observe the calculated values
of the paired Student tests for the Brodatz images. All the
values are signicant and a clear tendency is shown for the
defects which have a radius greater than 2 pixels: the
Mexican hat filters seem to be the most efficient at detecting
singularities. The � wavelet is more efficient than the �
wavelet, which provides us better results than the Gabor
filters. For defects with a radius lower than 2 pixels, the �
and � wavelets are more efficient than the Mexican hat
filters. All of these observations were also concluded in the
case of the synthetic images with a high roughness
background [1, 2].

We can explain the poor results of the Gabor filters by
the level of sphericity of these filters. Since they are less
spherical than the nearly isotropic wavelets, it is unsurprising
that their results of detection are worse than those of the �
and ��wavelets. The same argument can be used to justify
the best detection results of the Mexican hat filters, which
are the most spherical since they are isotropic.

All this is valid for the defects with a radius larger than
2 pixels. For smaller defects, the form of the � and � wavelets

enables them to adapt to the background better than the
Mexican hat filters, and then to detect smaller defects than
them.

From table 1(b), we can observe that the Gabor filters
are clearly the least efficient to detect singularities in parts
of mammographies. The reason is probably the same as for
the Brodatz images. In the same way, the nearly isotropic
wavelets � and � are still more efficient than the Gabor
filters. However, in the case of the mammography parts, the
Mexican hat filters are not as much performant as for the
Brodatz textures. Their efficiency is then comparable to those
of � and the � wavelets. A reason of this tendency is that the
form of these wavelets can adapt better to this kind of
background than the Mexican hat wavelets. Indeed, the
mammography parts seem to be smoother than the Brodatz
images. The structure of their texture is more fine.

Figure 8: Detection of pointwise defects in Brodatz textures:
comparison of the Gabor filters, the � wavelet and the
Mexican hat filters with the  wavelet: (�) Mexican
Hat; (•) �; (�) Gabor ��= 1

The comparison is then carried out starting from the mean
and the standard deviation of the five differences between the
results of a filter and those of the reference filter. The reference
filter is chosen as the � wavelet. The obtained results are
presented in Fig. 8 for the Brodatz images and in Fig. 9 for
the parts of mammographies. A negative value means that the
filter is more efficient than the filter of reference.

An example of singularity detection is presented in Fig.
10. The first image (a) is the Brodatz image D16 which
contains 10 conic defects with a radius of 5 pixels attenuated
by a factor � equal to 0.15. The position of the defects is
shown in the second image (b). First the image (a) is
processed by the four filters. Four new images are then
obtained, and the following steps of the methodology will
be performed on them. A threshold is then performed on the
processed images in order to extract the interesting points.
This threshold can be different for the four filtered images.
It is computed to obtain a maximum number of right detected
singularities, which are bordered with a square, and a
minimum number of wrong detected points (false-positive),
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bordered with a circle. The image (c) corresponds to the
image (a) filtered by the Mexican hat filters after the
threshold. The 10 inserted conic defects and no other point
are detected. These filters are the most efficient for this case.
The images (d) and (e) correspond to the detection with the
nearly isotropic wavelets � and �, which are a little less
efficient than the preceding filters. Indeed, the 10 defects
are still detected, but respectively 1 and 2 false-positives
are also observed. Finally, as expected, the Gabor filters give
us the lowest number of right detected singularities and the
largest number of false-positives, namely 9 right and 9 wrong
detected.

4.3 Detection of Truncated Singularities

It would be interesting to know if the efficiency of detection
of the pointwise singularities is influenced by the top of the
cones. In this second part of the experiments, the defects we
want to detect are cones without the point at the top. Thus,

Figure 9: Detection of pointwise defects in parts  of
mammographies: comparison of the Gabor filters, the
� wavelet and the Mexican hat filters with the 
wavelet: (�) Mexican Hat; (•) �; (�) Gabor = 1

Figure 10:Example of singularity detection on a Brodatz image

the defects are truncated at a given height. This new height
corresponds to a percentage of the maximal height of the
starting cone, i.e. the height between the base and the point
of the top. The examined percentages vary from 10 to 100%,
a percentage of 100% corresponding to the whole cone. With
these tests, the influence of the truncation height on the
efficiency of detection is studied.

The other parameter to be examined is the radius of the
defects. Two sizes of radius are considered: 20 and 10 pixels.
For each size, a paired Student test between the results of
the detection for each percentage of truncation, and a
summarized graph are presented.

4.3.1 Defects with a radius of 20 pixels

Only one position of defects is sufficient to generalize the
results obtained for the detection of truncated defects with a
radius of 20 pixels. Indeed, all the values of the paired
Student test presented in tables 2(a) and 2(b) are signicantly
larger than the critical value, which is equal to 2.32635. In
table 2(a), corresponding to the Brodatz textures, we can
observe that the order of comparison between the filters is
not the same as for the pointwise singularities. In this section,
the Gabor filters are compared with � the wavelet, which is
compared with the � wavelet, which is compared with the
Mexican hat filters. The reason of this modication is that
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the � wavelet is more efficient than the � wavelet at detecting
truncated singularities. We observe the same order of
efficiency between the filters whatever is the percentage of
truncation. In addition, the Mexican hat filters are always
the best at detecting the defects.

Table 2
Detection of Truncated Singularities with a Radius of 20 Pixels:

Paired Student test on Each Set of Images

(a) Brodatz textures

Percentage Gabor � �
of height � � Mexican hat

10 13.7549 16.9722 15.1237
20 11.9383 16.8529 14.1157
30 11.8093 16.1139 13.6570
40 11.8561 14.9354 12.6761
50 11.7590 17.7456 12.2797
60 11.3830 15.9574 14.9629
70 12.0089 17.5400 12.8471
80 12.1476 17.5700 14.7675
90 12.0349 16.8586 14.6632
100 11.9913 17.3288 14.8424

(b) Parts of mammographies

Percentage Gabor � �
of height � � Mexican hat

10 7.0089 20.9673 3.8713
20 8.9656 22.5404 3.9322
30 8.6222 19.2651 3.4912
40 7.7957 15.5099 3.6902
50 6.4486 19.1439 3.5331
60 9.1575 18.3983 2.7780
70 7.1718 19.5424 4.2496
80 9.2170 20.3739 3.5230
90 8.3597 23.1228 3.1398
100 6.4319 21.4967 3.9543

All these observations are found again in Fig. 11, which
presents a global comparison between the filters and the filter
of reference . The values of the graph correspond to the mean
and the standard deviation of the difference between the
results of a filter and those of the filter of reference. We see
that all the values related to the Mexican hat filters are
negative, and the others are positive, in the same order. That
means that the truncation height of the defects has no effect
on the efficiency of detection of the filters, and that the
Mexican hat filters are the most efficient, probably because
the defects are rather large and the top of those has a spherical
aspect, which is also the form of the Mexican hat filters.

Figure 11: Detection of truncated singularities in Brodatz
textures: comparison of the Gabor filters, the �
wavelet and the Mexican hat filters with the � wavelet:
(�) Mexican Hat; (•) �; (�) Gabor  = 1

Figure 12:Detection of truncated singularities  in parts of
mammographies: comparison of the Gabor filters, the
wavelet and the � Mexican hat filters with the �
wavelet: (�) Mexican Hat; (•) �; (�) Gabor ��= 1

In table 2(b), corresponding to the mammography parts,
the paired Student tests were performed between the Gabor
filters and the � wavelet, the � and � wavelets, and finally
between the � wavelet and the Mexican hat filters. The order
of detection efficiency between the filters is the same as for
the Brodatz images: the Gabor filters are the least efficient,
the Mexican hat filters are the most efficient and the nearly
isotropic wavelets lie between these two families of filters.
Only one difference is observed: in this case, the wavelet is
more performant than the � wavelet. The reason of these
observations are certainly similar to those for the Brodatz
images. The comparison graph is presented in Fig. 12.

4.3.2  Defects with a Radius of 10 Pixels

It would be also interesting to study the influence of the
radius of the truncated defects on the detection efficiency of
the filters. A second radius is then chosen to be 10 pixels.
The same experiment is performed by all the filters, and the
analysis of the results is shown in table 3(a) and Fig. 13 for
the Brodatz textures and in table 3(b) and Fig. 14 for the
parts of mammographies. Let us recall that the critical value
is 2.32635 for the set of Brodatz images and 2.46202 for
the set of mammography parts.
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Table 3
Detection of Truncated Singularities with a Radius of 10 Pixels:

Paired Student Test on Each Set of Images

(a) Brodatz textures

Percentage Gabor � �
of height � � Mexican hat

10 4.8459 9.7024 8.6921

20 3.8954 10.6485 8.0611

30 3.3484 9.9598 8.5197

40 3.0231 9.2542 7.6164

50 2.4633 9.8093 8.3562

60 3.9131 9.8578 8.7133

70 3.3169 11.0489 8.2710

80 3.9945 10.3268 7.9023

90 3.9081 11.5180 9.0674

100 3.8329 10.6451 8.3864

(b) Parts of mammographies

Percentage Gabor � �
of height � � Mexican hat

10 7.1417 5.4193 –2.1343

20 9.6817 7.8824 –2.6625

30 7.9257 7.6689 –3.0760

40 7.3414 6.3515 –2.8617

50 8.1466 7.2700 –2.4630

60 9.5615 9.7695 –2.2154

70 5.3057 4.8837 –2.0151

80 9.2192 4.9050 –2.4681

90 10.6547 7.3002 –2.9881

100 8.8315 7.8406 –2.1268

Concerning the Brodatz images, once again we observe
the same order of efficiency of detection between the filters:
the Mexican hat filters are the most efficient, these are
followed by the � and � wavelets, and finally the Gabor
filters are the least efficient. The reason of this observation
is certainly the same as for defects with a radius of 20 pixels:
the large size and the spherical form of the top of the defects
seem to be best fitted by the Mexican hat filters. Fig. 13 is
used to visualize the comparisons between the examined
filters, with the wavelet as reference.

However, concerning the parts of mammographies, the
tendency between the nearly isotropic wavelets and the
Mexican hat filters is reversed in relation to those observed
for the truncated defects with a larger radius. In the present
case, the Mexican hat filters seem to be slightly less or as
much efficient to detect this kind of defects as the nearly
isotropic wavelets. This is probably due to the smaller size
of the defects and the regularity of the background, which
are more adapted for a detection with the � and � wavelets
than the Mexican hat filters.

5. CONCLUSION

In this paper, we compare different families of wavelets and
filters for the detection of pointwise defects and truncated
singularities in Brodatz textures and in parts of
mammographies. These families are the Gabor filters, the
Mexican hat filters and the nearly isotropic wavelets � and
�. The effect of the size of the singularities (as in the
preceding work [1, 2]) and the height of the truncation of
the truncated defects on the detection are studied. The same
procedure of detection is used for the experiments of this
work. The aim of this work was to prove that, in terms of
detection efficiency, we have the same order between the
families of filters on real textured images of reference and
on medical images. This assumption is verified by the
experiments. Thus we conclude that the Mexican hat filters
and the nearly isotropic wavelets are the most efficient for
the detection of singularities and other small sized defects
for any kind of textured images.

Figure 13:Detection of truncated singularities in Brodatz
textures: comparison of the Gabor filters, the wavelet
and the Mexican hat filters with the  wavelet: (�)
Mexican Hat; (•) �; (�) Gabor = 1
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A New separable spherical wavelets

We will, in this section, describe a method to construct new
more spherical wavelets. We will proceed with a numerical
optimization. The first step is to isolate the parameters. We
will then explain the setup of the optimization procedure
we used. We will finally present our results as a Pareto-front.
In this paper, we will use both extremes of the used high-
pass filter which is isotropic such as explained in [1].
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A.1 Parametrization

To achieve the parametrization of the set of orthonormal
wavelets, we use the algorithm proposed by Sherlock-Monro
in [18] which can generate any kind of orthonormal wavelet.

For a wavelet with a support width of N, we have 1
N

Z �

free parameters. We will use wavelets with a support width
of 8 since a quick one-objective optimization of the
sphericity of the scaling function with varying support width
reveals that essentially no improvement can be obtained with
longer wavelets.

A.2 Optimization

As said above, the compromize between the sphericity of
the filters is not known a priori. We are thus looking for a
set of solutions representing different trade-os between the
objectives. So, a multiobjective algorithm will be used to
optimize the sphericity of both the lowpass and highpass
filters. This will allow us to make the compromize between
noise removal and high response to defects as described later
on. The algorithm we use to perform this multiobjective
optimization is a genetic algorithm. This kind of algorithm
works with a set of candidate solutions and evolves them to
reach the optimum of some fitness function. They can be
rather slow, but are robust and can provide good solutions.
The evolution is guided through a scalar value attached to
each solution, its fitness. The mapping of the two-
dimensional objective space to a one-dimensional fitness
function needs care. The goal is to reward potentially good
individuals but also to maintain diversity. Moreover, we want
a well spread set of solutions covering all the Pareto front.
The fitness is here computed according to the “Strength
Pareto Evolutionary Algorithm (SPEA)” developed by
Zitzler and Thiele, see [19]. We did not use elitism to avoid
a too fast convergence, even with a population size of 200

but collected the non-dominated individuals of the 100
generations. We then selected 10 wavelets from this optimal
set so as to cover the whole Pareto-front. These wavelets
will be used throughout this paper.

A.3 Results

We present in Fig. 15 the Pareto-front, i.e. a set of solutions
such that no solution is better in both objectives than another,
we obtained from the optimization. Also, two arrows point
to two well known wavelets with a support width of 8: the
Daubechies and the nearly symmetric wavelets (also called
“least asymmetric”), see [20] for a complete description of
these wavelets, that we here represent by their sphericity.

Figure 14:Detection of truncated singularities  in parts of
mammographies: comparison of the Gabor filters, the
��wavelet and the Mexican hat lters with the �
wavelet: (�) Mexican Hat; (•) �; (�) Gabor  ��= 1

Figure 15:Pareto front generated with GA
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