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ABSTRACT: An investigation about the robust estimation of a class of systems with noise coupling
input saturation is presented in this study. In general, the existed estimation algorithm is based on
the exactly known of the input saturation, but in fact, this is not always true in some practical cases
because of the coupling of input saturations and input noises. For treating these kinds of coupling
problems in the state estimations of systems, in this study, one fuzzy-based optimal estimation
algorithm is proposed. The proposed optimal estimator includes two parts: firstly, a regression form
fuzzy system that is adopted to approximate the unknown input saturation, and then, an optimal
estimator that combines the above fuzzy system by H, filter design concept for precisely estimating
system states is proposed. This combination of fuzzy approach and H, filtering technologies
successfully offers one a more simple and practical method for treating the estimation problem of a
class of systems that input saturations and input noises couple together.
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INTRODUCTION Kalman Filter that is widely used in the state

This paper mainly focuses on the optimal estimation. Of course, it is no doubt that in the

estimator design of a class of systems with Presence of unknown noise coupling input

coupling of the input noise and input saturation Saturations, performance of Kalman Filter will
described by be seriously degraded since the unknown input

saturations coupling with input noises appear
X(k+1)=FX (k) +G(satw(k)) +w(k)) (1) on a system model as extensive noises, and the
constant processing noise variance will be not
capable of covering it because of the time-
variant character of these type signals.

where X (k) e R"is the state vector, y(k)e R™
is the input signal, and w(k) € R is the input
noise. The saturation function sat of the input
signal R _y R™ is defined as Based on the reasons depicted above, it is

3 r highly desirable to apply advanced estimation
sat(u(k) =[sat(w, (&) sat(u;(®) ... sat(u, ®)] techniques to develop an effective estimator to
u, (k)|)_ improve the observation performance for this
coupling problem of noises and input
saturations. Firstly, how to mimic the unknown
input saturation is clearly one of the main tasks
for this state estimation problem, since it
tremendously affects the performance of a
designed estimator. For solving this system
modeling problem, the fuzzy approximator is
adopted naturally. Recently, fuzzy modeling has
been proven as a powerful and useful universal
approximator [1-2] for nonlinear systems and
any nonlinear system can be approximated by

with sat(u; (k)) = sgn(u, (k) min(p,

There are, in practice, so many control
systems possessing this kind of special feature,
e.g., ballistic missile’s maneuver couples with
wind gusts, acceleration signal measured by
accelerometers couples with the external and
internal noises, and so on. Generally, the input
signal u(k) is always assumed as an exactly
known variable and never corrupted with noise;
hence one is capable of dealing with these kinds
of estimation problems by the well-known



50

this modeling technology as precise as possible.
In this investigation, the unknown input
saturation sat(u(k)) will be regarded as a black-
box and modeled by one multi-input and multi-
output (MIMO) fuzzy system. Based on this
setting, the estimation problems of a class of
systems with the noise coupling input
saturations can then be reformulated as fuzzy
modeling and noise elimination problems.

PROBLEM FORMULATION

Consider a discrete-time system in the presence
of input noise weR?, measurement noise v €
R!, and unknown saturated deterministic input
signal sat(u(k)) € R™

X(+1)=FX(k)+G(satw(k) +w(k)) (2a)
Z(k) = HX (k) + v(k) (2b)
S(k) = DX(k) (2¢)

where X(k) € R" is the state vector, Z(k) € R*is
measurement output, and S(k) € R* is the signal
to be constructed by digital estimators. The
saturation function sat of the input command
R™— R™ is defined as

satw(k) =[sat@w, (k) satu,®) ... sat(, k)]

with sat(u, (k) =sgn(y, (k) min(p, , and
the illustration of the coupling signal
sat(w(k)) + w(k) of the input saturation and
input noise is shown as Fig. 1. D is a constant
matrix, which is specified to extract the desired
signal S(k) from the state vector X(%k). The
process noise w(k) and the measurement noise
v(k) are modeled to mutually independent and
white Gaussian: w(k)~5(0,q), v(k)~38(0,r).
When the coupling signal of input saturation
and input noise {sat(w(k))+w(k)} occurs in (2),
the standard Kalman Filter can not reconstruct
the original processing because of the time-
varying noise variance q(k).

For treating this time-varying noise
variance and signal coupling problem from an
optimal design angle, we deal with it firstly by
mimicking the behavior of the unknown
deterministic input saturation sat(u(k)) with a
MIMO fuzzy model. Suppose a multi-input and
multi-output (MIMO) fuzzy model @ (k,0) with
respect to the real unknown sat(u(k)) exists,
hence (2a) can be rewritten as
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X*k+1=FXk) +GG(k,0)+u,(k)+wlk) (3)

where i(k,©) = ©"¢(k) is the MIMO fuzzy-based
input saturation to mimic the real input
saturation sat(u(k)) and
u, (k) =satw(k) -0"c(k) is the modeling
uncertainty between the unknown
deterministic input saturation and the fuzzy
modeling system.

The time-varying approximated input
saturation i(k,®) for the design of the fuzzy-

based robust estimator is inferred by a MIMO
fuzzy system, for which the jth fuzzy IF-THEN
rule is represented by

R;: If A(R) is Alj and A(k) is A2j~--
Ag}., Then j is U,

the
X,(k)-X,(k-1), § is input signal. A_,

and Ag(k) is

where variables

A, (k) =

premise

ie{l,...,g} and je{l1,2,..,
and through this paper, any one of them has

the Gaussian membership function with center
Cij and standard deviation G, as follows :

AR -Cy Y
0, (Al(k»_exp[% (G—” @

The fuzzy-based input saturation @ with

M}, are fuzzy sets,

center-average defuzzifier, product inference
and singleton fuzzifier are given in the following
form:

M

zuj{{ne (A, (k))}}
(k) = =5
Z{l}le (A, (R)

(5)

Let us denote the fuzzy basis functions as

116, (4, (k)
£, (k) =1

Z{f{e (A, ()} >

forj=1,2,...M (6)
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and denote.
é(k)é[&l (R) &, (R) ... &)y (R)]

Consequently, @,(k) in (5) is of the following
form:

i1, (k) = [&, () &, (k) ... &, ()] %

A E(R)6,

where 0, = [uil Uio Uim ]T'
Therefore, the fuzzy command g is as the

following:

i, (k) E(R)O,
uk,®)=| : = : %)
u, (k)| |&k)0,
ie.,
u(k,0)=0"¢. (8)
where
Ek) O - O 0,
R
0 0 E(k) 0,

Define the estimation error as follows:
e(k) = S(k) - S(k)

— DX (k) - DX (k) 9)

where §(%) is the reconstructive signal.

(i) Optimal Estimation Problem of a class of
systems with noise coupling input saturation

After the above arrangements about the
unknown input saturation by the so-called fuzzy
modeling technique and the definition of

estimation error, then according the H,
estimation design concept, a robust estimator
can then be constructed. The design objective
of this study is to find an estimator satisfy the
following H, performance for all w(k) and v(k).

kf
min e(0)" Fe(0)+ > e(k)" Qe(k) (10)
k=1

w(k)vk

where P is an initial weighting matrix that is
assumed to be symmetric and positive definite,
and @ is a symmetric semi-positive definite
matrix.

(it) Optimal Estimator Design

The following fuzzy-based robust estimator is
proposed to deal with the state estimation of
the system in (2).

X(k+1) = FX (k) + L(Z(k) - Z(k)) + i(k, ©)
S(k) = DX (k) (11)
where L is the designed robust estimation gain.
Then, it follows from (2), (9) and (11) that
e(k+1)=Fe(k)+ LH (e(k) +v(k)) +u, (k) + Gw(k)
= Ae(k) +u, (k) + Qiv(k) (12)
where
A=[F+LH], Q=[G LH],w(k)=[w® v®]

Besides, stability is always an important
issue in this noise coupling input saturation
estimation design problem. In the following, we
propose specifying the steady state estimation
gain L to stabilize the error dynamic system in
(12) with the guarantee of H, performance index
(10) or (11).

In this section, we will use the common
Lyapunov function to check the stability of the
system (12). Let P be a positive definite matrix
and define the Lyapunov function candidate as
follows:

V (k,e(k)) = e(R)" Pe(k) (13)

Denote
AV(k,e(k)) = V(k +1e(k+ 1))— V(k,e(k))
(14)
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After some mathematical manipulations, we
obtain the following theorem.

Theorem 1: If the fuzzy-based optimal
estimator (11) is proposed for a class of systems
that input saturations and input noises are
coupled naturally, and there exists a positive-
definite matrix P = PT > 0 such that the
following matrix inequality:

P-DQD+o> 0 0 F'P-G'Y”

0 1 0 BP
>0
0 0 1 -Y
PF -YG PB -Y P
(15)

is satisfied, where Y = PL, and robust estimation
gain L = P'Y. Then the error dynamic system
in (13) quadratically stable in the absence of
noises and modeling uncertainties, and optimal
performance index (10) or (11) is achieved.

Based on the analysis above, the optimal
estimation design of a class system with noise
coupling input saturation can be summarized
as follows:

Step 1) Select the fuzzy rules and
membership functions for the input saturation
sat(u(k)). To reduce the design effort and
complexity, rules of the fuzzy modeling system

i(k,®) are generally used as few as possible. In
general, one can easily obtain a set of rules after
some tests by ANFIS algorithm [2].

Step 2) Select the weighting matrices @.

Step 3) Solve the EVP in (16) to get positive-
definite matrix P and Y.

Step 4) Obtain the robust estimation
parameter L = P-'Y and corresponding
minimum p?.

Step 5) Realize the fuzzy-based robust
optimization estimator

X(k+1) = FX(k)+ L(Z(k) - Z(k)) + ii(k,0©) (16)

SIMULATION RESULTS

In this research, an estimation problem of a
maneuvering target with noise coupling input
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saturations (maneuvering commands) is given
for verifying the performance of the designed
method.

To demonstrate estimation performance of
the proposed fuzzy-based optimal estimation
design, the following scenario is considered.

Case 1: The maneuvering target is toward
to aim (a (k) < 0)

r(k) =10 km 6(k) = 60° r(k) =-1km/s

and the initial conditions of X (%) and sampling
rate T are

#(k) =12 km 0(k) =55° #(k) =-1km/s, T =0.01sec

From the simulation results with respect to
the range and bearing of a maneuvering target
shown in Fig. 2 and 3, the proposed method
reveals the precisely estimating property for the
target states.

CONCLUSIONS

A novel and robust estimator with a fuzzy
approximator for the state estimation of a class
of systems with unknown noise coupling input
saturations is investigated in this study. From
the simulation results of the trajectory tracings
of a maneuvering target, this fuzzy-based
optimal estimator yields high accuracy
estimation with respect to effects of unknown
input saturations, input noises and
measurement noises. It can thus be claimed
that the proposed method possesses strong

satfu(k))+wik)

)

»“'i‘.{
el /
v’ s
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Figure 1: The Nonlinearity Model of (sat(u(k)) + w(k)).
(Coupling signal of input saturation and noise)
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Figure 2: History of the Real Range r(k) and Estimation range 7 (k).

---- History of the real bearing
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Figure 3: History of the Real Bearing 0(k) and Estimation bearing é(k)
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potential to be applied in the high-performance
estimation design of a class of system with noise
coupling input saturations.
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