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Abstract: In this paper we establish symmetric chi-square divergence measure 
with help of the new convex function and properties of new f-divergence measure. 
Upper and lower bounds of Jenson-Shannon’s divergence, in terms of Symmetric 
chi-square divergence using a new f-divergence measure, numerical illustration and 
inequalities have studied. Relations between Symmetric chi-square divergence and 
resistor-average distance have also studied.	
AMS Classification 62B-10, 94A-17,26D15

Introduction1.	
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be the set of all complete finite discrete probability distributions. There are many 
information and divergence measures exists in the literature on information theory 
and statistics. Jain and Saraswat [10] have introduced new f-divergence measure 
and its particular cases which is given by
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where, f : R+ Æ R+ is a convex function and P, Q Œ Gn.
The new f-divergence is a general class of divergence measures that includes 

several divergences used in measuring the distance or affinity between two probability 
distributions. This class is introduced by using a convex function f, defined on (1/2, •).

Proposition 1.1. Let f : [1/2, •) Æ R be convex and P, Q Œ Gn then we have the 
following inequality

	S f (P, Q) ≥ f (1)	 (1.2)
Equality holds in (1.2) iff
	 pi = qi "i = 1, 2, ..., n	 (1.3)

Corollary 1.1. (Non-negativity of new f-divergence measure) Let f : [0, •) Æ R be 
convex and normalized, i.e.

	 f (1) = 0	 (1.4)
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Then for any P, Q Œ Gn from (1.2) of proposition 1.1 and (1.4), we have the 
inequality

	S f (P, Q) ≥ 0	 (1.5)
If f is strictly convex, equality holds in (1.5) iff
	 pi = qi "i Œ [i, 2, ..., n]	 (1.6)

and
	S f (P, Q) ≥ 0 and Sf (P, Q) = 0 iff P = Q	 (1.7)

Proposition 1.2. Let f1 & f2 are two convex functions and g = af1 + bf2 then Sg(P, Q) 
= aSf1(P, Q) + bSf2(P, Q), where a & b are constants and P, Q Œ Gn.

SOME WELL-KNOWN DIVERGENCE MEASURES2.	

It is shown that using new f-divergence measure we derive some well-known 
divergence measures such as Jenson-Shannon’s divergence, symmetric chi-square 
divergence measure, We now give some examples of well-known information 
divergence measures which are obtained from new f-divergence measure.
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 then symmetric chi-square divergence is given by
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	 ∑	 If f (t) = -log t then relative Jensen-Shannon divergence measure is given by
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SYMMETRIC CHI-SQUARE DIVERGENCE MEASURE3.	

Now we consider the function f : (1/2, •) Æ R given by

	 F(t) = 
t t

t
( )
( )

-
-
1

2 1

2

	 (3.1)

	 F¢(t) = t
t

-
-

-
1

4 2 1
3
42( )

	 (3.2)

	 F≤(t) = 1
1

2 1
0

3
+

-
>

( )t
	 (3.3)

Function fk(t) is always convex, " >t
1
2

Now applying new f-divergence measure property (2.1) on (3.1)

	 s P Q P Qf
i i i i

i ii

n p q p q
p q

( , )
( )( )

( , )=
- +

=
=
Â1

8
1
8

2

1

Y 	 (3.4)

where, Y(P, Q) is symmetric chi-square divergence measure.
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NEW INFORMATION INEQUALITIES4.	

The following theorem concerning inequalities among new f-divergence measure 
and symmetric chi-square divergence measure holds. Its particular cases are given 
in Section 6.

Theorem 4. Let f : (0, •) Æ R is normalized mapping i.e. f (1) = 0 and satisfy the 
assumptions.
	 (i)	 f is twice differentiable on (r, R), where 0 £ r £ 1 £ R £ •
	 (ii)	 there exist constants m, M such that
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If P, Q are discrete probability distributions satisfying the assumptions
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Then we have the inequality
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Then Fm(.) is normalized, twice differentiable and since
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For all r Œ (r, R), it follows that Fm(.) is convex on (r, R). Applying non-negativity 
property of new f-divergence functional for Fm(.) and the linearity property, we 
may state that
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from where the first inequality of (4.3) results.
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which is obviously normalized, twice differentiable and by (4.1), convex on (r, R). 
Applying non-negativity property of f-divergence functional for FM(.) and the 
linearity property, we obtain the second part of (3.3) i.e.

	 0 £ M Y(P, Q) - Sf (P, Q)	 (4.6)
from (4.5) and (4.6) give the result (4.3)
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Remark 1. If we have strict inequality “>” in (4.3) for any t Œ (r, R)then the mapping 
Fm(.) and FM(.) are strictly convex and equality holds in (4.3) iff P = Q.

Remark 2. It is important note that f is twice differentiable on (0, •) and
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probability distributions P, Q.

RESISTOR-AVERAGE DISTANCE5.	

Here we use the Resistor-Average distance as a measure of dissimilarity between 
two probability densities on new f-divergence measure which is defined as

	 d (s, d) d (s, d) d (s, d)Rad = +- - -[ ]y y
1 1 1

Symmetric divergence measure from which is derived, it is non-negative and equal 
to zero iff p(x) ∫ q(x), but unlike it, it is symmetric. Another important property 
of the Resistor-Average distance is that when two classes of patterns Cp and Cq 
are distributed according p(x) and q(x), To see in what manner RAD differs from 
the symmetric Chi-square divergence, it is instructive to consider two special cases: 
when divergences in both directions between two pdfs are approximately equal and 
when one of them is much greater than the other:

	 *Ky(S, D) ª	Ky(S, D) ª K
	 KRAD(S, D) ª	D
	 *Ky(S, D) ª	Ky(S, D) ª K
	 Ky(S, D) ª	Ky(D, S) or Ky(S, D) ª Ky(D, S)
	 KRAD(S, D) ª	min Ky(S, D) or Ky(D, S)

Some Particular Cases6.	

Using equation (4.3) of Theorem 4, we shall be able to point out the following 
particular cases which are may be interested in Information Theory.

Proposition 6.1: Let P, Q Œ Gn be two probability distribution with the property 
that
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Proof: Consider the mapping f : (r, R) Æ R.
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f ≤(t) ≥ 0 and f (1) = 0, So function f is convex and normalized.
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Define,	 g(t) =	
2 4 6 3

2 1

2 4 6 3

2 1
1 2 42

3

2

3 2

t t t
t

f t
t t t

t t
( )

( )
( )

( )

( )

(- +
-

¢¢ =
- +
-

Ê
ËÁ

ˆ
¯̃

=
tt t
t t

2

3

6 3

2 1

- +
-

)

( )

	 g(t) =	
2 4 6 3

2 1

2

3

( )

( )

t t
t t

- +
-

Then obviously

	 m = sup ( )
( )

( )
, inf ( )

(

[ , ] [ , ]t r t r
g t g t

r
Œ Œ

=
- +

-
= =

-
R R

R R

R R
m

2 4 6 3

2 1

2 42

3

2 66 3

2 1 3

r
r r

+
-

)

( )
	 (6.2)

Also then
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Prove of the result (6.1)

Numerical Illustration7.	

Let P be the binomial probability distribution for the random valuable X with 
parameter (n = 8, p = 0.5) and Q its approximated normal probability distribution. 
The following table has also discussed [8].

Table 1. Binomial Probability Distribution (n = 8, p = 0.5)

x 0 1 2 3 4 5
p(x) 0.004 0.031 0.109 0.219 0.274 0.219

q(x) 0.005 0.030 0.104 0.220 0.282 0.220

p(x)/q(x) 0.774 1.042 1.0503 0.997 0.968 0.997

It is noted that r = 0.77 and R = 1.05. Here we shall discuss the numerical bounds 
of new information divergence measure in terms of symmetric chi-square divergence 
measure. From equation (6.1) and using the table of Binomial distribution where R 
and r are the lower and upper bounds then we get
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	 (1.58) y(P, Q) £	F(Q, P) £ (12.40) y(P, Q)
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