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Abstract: The present study highlights the entropy generation for MHD compressible 
flow and heat transfer in partially filled channel with porous medium in the presence 
of radiation. Upper portion is clear fluid region and lower portion is porous region. 
We analyzed the viscous dissipative effect in the case of shear driven flow: the shear 
heating generated by the upper plate which is movable along with fluid friction. 
Analytical solution of the governing equations for momentum and energy has been 
obtained. The effects of permeability of the porous medium, viscosity ratio parameter, 
radiation and magnetic field parameter on temperature distribution, heat transfer 
rate, entropy generation number and Bejan number for both porous and clear fluid 
regions are obtained and discussed.

Introduction1.	

Flow in channels which are partially filled with a porous medium is important because 
of its many important engineering applications. Flow in channels which are partially 
filled by a porous medium and partially filled by a clear fluid is important because 
the occurrence of such fluid flow situations in many engineering applications. Some 
examples are: drying processes, heterogeneous reactors, filtering, cooling and heating 
processes, geothermal energy management, chemical reactors, electronic cooling, 
ceramic processing etc. Recently, in modified equipments the study of porous inserts 
has acquired substantial interest for improving heat transfer. Beavers and Joseph 
[1] who has been first analyzed the fluid mechanics at the interface between a fluid 
layer and a porous medium over a flat plate. Recently, heat transfer in channels 
partially filled with porous media has received considerable attention and focus of 
several investigations, Al-Nimr and Alkam [2], Chikh et. al., [3], Vafai and Kim [4], 
and Poulikakos and Kazmierczak [5]. Coupled and heat transfer problems in channels 
partially filled by a porous medium were studied analytically by Kim and Russell 
[6], Chauhan and Gupta [7], Kuznetsov [8] and many others. Use of an external 
magnetic field is applied in many industrial applications, particularly as a control 
mechanism in material manufacturing. Magnetic field strength plays an important 
role for crystal formation. The scientific treatment of the problems formulation 
of irrigation, tile drainage and soil erosion are the present area for focus of the 
development of porous channel flow. The MHD channel flow with heat transfer finds 
applications in thermo fluid transport modeling in meteorology, magnetic geosystems, 
and solidification process, turbo machinery in metallurgy and in some astrophysical 
problems. Several researchers McWhirter et. al., [9], Geindreau and Auriault [10], 
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Chauhan and Jain [11], Hayat et. al., [12],Chauhan and Rastogi [13], Marteen [14], 
Job and Gunakala [15], Onyango et. al., [16], Sreekala and Reddy [17], Kiema et. al., 
[18], Jain and Choudhary [19] studied two dimensional MHD flow and heat transfer 
through channels and plates under different boundary conditions.

Heat transfer analysis with viscous dissipative term is important because due to 
movement of boundary, the velocity of the fluid near the boundary deforms and shears 
the layer of fluid adjacent to the boundary. Therefore, study of viscous dissipation 
effects with heat transfer for moving boundaries is significantly important. Brinkman 
[20] has given first theoretical work on single phase flow and heat transfer study 
with viscous dissipation effect through a circular tube. Numerical analysis in the 
presence of viscous dissipation has been given by Cheng and Wu [21] for Newtonian 
fluid flow in a parallel plate channel. Kundu [22] investigated the effect of viscous 
dissipation on study of heat transfer between two parallel plates. He considered two 
cases of fluid flow: shear driven flow and Poiseuille flow. Radiative flows and heat 
transfer are frequently encountered in many scientific and environmental processes. 
It plays an instrumental role in designing the pertinent equipment such as heating 
and cooling of chambers, and solar power technology. Several researchers have 
examined effects of radiation on study of transfer in porous and non-porous medium 
by utilizing other radiative flux model or the Rosseland, such as Sparrow and Cess 
[23], Raptiset al., [24], Chauhan and Rastogi [25], Singh [26], Plumb et. al., [27], 
Seddeek and Salem [28], Al-Odat et. al., [29], Jain and Bohra [30].

The performance of the engineering processes can be developed by using Second 
law analysis. It is applicable for investigation the entropy generation rate. Since 
entropy generation is the measure of the destruction of the system for available work, 
the determination of the factors responsible for the entropy generation is also useful 
in upgrading the system performances. The method is introduced by Bejan [31, 32]. 
The entropy generation is considered in many energy- related applications, such 
as geothermal energy, solar power collectors and the cooling of modern electronic 
systems. The irreversibility phenomena, which is expressed by entropy generation in 
a given system, is related to heat-mass transfers, viscous dissipation and magnetic 
field etc. Mahmud et. al., [33] has examined thermodynamic analysis of mixed 
convection in a channel with transverse hydromagnetic effect. In a porous channel the 
study of entropy minimization for MHD fluid flow has been done by Tasnim et. al., 
[34]. Makinde and Osalusi [35] analyzed the second law analysis for laminar flow 
in a channel which is filled with saturated porous media. The parametric analysis 
of entropy generation rate in a channel has been presented by Cimpean and Pop 
[36]. The entropy generation rate for radiative MHD Couette flow inside a channel 
with naturally permeable base has been studied by Vyas and Rai [37]. Several 
investigators discussed the effects of entropy generation in channels and ducts of 
different configurations filled with a porous material, such as Al-Odat et. al., [38], 
Damesh et. al., [39], Das and Jana [40], Rajvanshi et. al., [41], Jain et. al., [42].

In this study, we have examined the entropy generation effect on MHD 
compressible shear driven fluid flow and heat transfer for moving impermeable 
wall of a composite channel partially filled with a porous medium and partially 
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with a clear fluid. The influence of radiation and viscous dissipation on the rate of 
heat transfer has also been investigated. The effects of the permeability parameter, 
Hartmann number. Brinkman number, radiation parameters are investigated and 
discussed. The focus of this study is on the radiation & MHD effects on the heat 
transfer characteristics in a channel through both porous and clear fluid regions. 
We hope the results of this study may serve as a basis for an experimental test and 
helpful to engineers in performing preliminary design calculations.

Formulation of the Problem and Solution2.	

A steady, laminar, viscous compressible Newtonian fluid flow in an infinitely long 
impermeable horizontal parallel-plate channel is considered under the effect of 
transverse magnetic field B0, applied normal to the flow direction. The physical 
configuration of the problem is shown in Figure 1. The induced magnetic field is 
negligible i.e. Hall current effect of MHD is negligible, as magnetic Reynolds number 
is assumed to be small.

Figure 1. Schematic diagram

The channel is divided into two regions. Region-I (0 £ y £ h1) is clear fluid region, 
where momentum equation is taken as Navier-Stokes equations; and Region-II 
(-h2 £ y £ 0) is porous medium region, where Brinkman equation hold. The 
upper plate is moving in x-direction with constant velocity V* and has a uniform 
temperature T*, while lower plate is stationary and has a uniform temperature T0. 
Here T0 < T*. The x-axis is taken along the fluid-porous medium interface and y-axis 
is normal to it. The flow in the channel is assumed to be fully developed and the 
shear-driven flow caused to the motion of the upper plate along x-direction, thus the 
only non-vanishing component of the velocity is in the x-direction and both velocity 
and temperature of the fluid depend only on y. Let u1, u2 be the velocity components; 
t1, t2 be the temperatures and P1, P2 be the pressure for the clear-fluid region and 
porous region respectively. We assume that all the thermo-physical properties other 
than density are constant and behavior of compressible fluid is such that pressure 
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can be defined as a function of density and temperature, i.e., P1 = P1(r, t1), P2 = 
P2(r, t2). Also let P0 be the pressure at (0, 0, 0).

It is further assumed that the medium is optically thick, which is gray, emitting-
absorbing radiation but not scattering. Following Rosseland flux model and Seigel 
and Howell [43], the expression for radiative heat flux takes the form, as follows:

	 qr = - ¢
¢

4
3

4s
k

dt
dy

	 (1)

where, s¢, k¢ are Stephan-Boltzman constant and mean absorption coefficient 
respectively.

We assume that the temperature difference within the fluid is sufficiently small 
so that t4 may be expressed as a linear function of temperature t. This can be done 
by expanding t4 in Taylor series about T0 and omitting higher order terms; which 
yield.

	 t4 @ 4T0
3t - 3T0

4	 (2)
The governing equations for compressible fluid flow; such as, continuity, 

momentum and energy equations simplify to the following:
The equation of continuity for both regions reduces to
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For porous region-II (-h2 £ y £ 0);
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The boundary conditions for the present problem are:
at  y = h1; u1 = V*, t1 = T*

at  y = 0; u1 = u2, m m
bmdu

dy
du
dy k

u2 1

0
2- = , t2 = t2, k

dt
dy

k
dt
dy

1 2= , P1 = P2

at  y = -h2; u2 = 0, t2 = T0		  (12)

Here m and m  are the viscosity and effective viscosity, k and k  are the thermal 
conductivity and effective thermal conductivity, qr and qr  are radiative heat flux in 
the clear-fluid and porous region respectively, r is the density, k0 is the permeability 
of the porous medium, b is the dimensionless empirical constant, and s is the electric 
conductivity.

The continuity and above momentum equations imply that
	 r = r(y), P1 = P1(r(y), t1(y)) and P2 = P2(r(y), t2(y))	 (13)
Solving the momentum equations for pressure, we obtain the expressions for the 

pressure distribution in both regions as follows:
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Now we introduce the following non-dimensional quantities:
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Using equations (1), (2), (13) and above non-dimensional quantities, equations 
(4) - (11) reduces to the following:
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and the boundary conditions (12), in non-dimensional form become
at  h = 1; u = 1, q = 1
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where,
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The solution of equations (16), (17), (18) and (19) under the boundary conditions 
(20) for non-dimensional velocity and temperature profiles are as follows:
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The non-dimensional rate of heat transfer at the upper impermeable plate is 
given by
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The non-dimensional rate of heat transfer at the lower impermeable bottom is 
given by
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The non-dimensional shear stress at the upper impermeable plate is given by
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The non-dimensional shear stress at the lower impermeable bottom is given by
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Entropy Generation3.	

In all sort of thermal engineering applications, heat transfer irreversibility and fluid 
friction irreversibility are common. Following Bejan, the volumetric rate of entropy 
generation for both porous and clear fluid regions by considering viscous dissipation 
effect, can be written as

For clear fluid region:
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For porous region:
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where, Tr is the reference temperature
The dimensionless form of the entropy generation number in the clear fluid region 

(I) is given by
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	 (MFI)1 =	T¢NBrM
2u2, is the magnetic friction irreversibility in clear fluid 

		 region.

The dimensionless form of the entropy generation number in porous region (II) 
is given by
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In many engineering designs and optimization problems, the contribution of the 
heat transfer entropy generation to the total entropy generation rate is required; 
therefore, Paoletti et. al., [44] presented Bejan number (Be) which is an alternative 
irreversibility distribution parameter in terms and defined as the ratio of the entropy 
generation due to heat transfer (NH) to the total entropy generation (Ns). Bejan 
number is given by the following mathematical expression

For clear fluid region:

	 (Be)1 = 
( )
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For porous region:
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2
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Analyzing the expression of Bejan number, it could be observed that its value lies 
between 0 < Be < 1 with the following extreme cases and when entropy is generated 
by heat transfer irreversibility and fluid friction irreversibility, the value of Bejan 
number could be Be = 1 and Be = 0 respectively.

Figures and Discussion4.	

Figures 2-3 represent the fluid temperature profiles across the channel. Generally, 
the fluid temperature is zero at the lower fixed plate and gradually increasing 
within the channel toward the upper moving plate. As M increases, due to a rise 
in magnetic field intensity, a further increase in the fluid temperature is observed. 
This can be attributed to the increasing effect of Joule heating. It also shows the 
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temperature profiles for different values of R. The radiation parameter R defines the 
relative contribution of conduction heat transfer to thermal radiation transfer. It is 
obvious that an increase in the radiation parameter results in increasing temperature 
throughout the channel. However the effect of velocity slip parameter b is to reduce 
the temperature in the channel.

The effect of viscosity ratio parameter f1 on the temperature is shown in Figure 3. 
From this figure, we observe that when the value of viscosity ratio parameter 
increases, the temperature distribution also increases in the channel. Meanwhile, a 
fall in the fluid temperature is observed with an increase in permeability parameter 
K. It is seen that the temperature field increases with the increase in the value of 
the Brinkman number NBr because viscous forces generates more energy to enhance 
fluid temperature in the channel, and it is already known that NBr accounts for the 
relevance of viscous heating.

Figures 4-5 illustrate the effect of thermo-physical parameters on rate of heat 
transfer at the upper moving plate. It can be seen that the rate of heat transfer 
decreases at the upper moving plate with the increase in the NBr value, become zero 
at certain critical brinkman number N*

Br then changes sign and further increases in 
magnitude. The value of critical brinkman number further increases by increasing 
the value of b, K and decreases by increasing the value of f1, M, R.

Figures 6-7 show the influence of physical parameters on the local entropy 
generation number Ns plotted against h. It is seen that the entropy generation 
number Ns is low in the middle part of the channel because of gradually varying 
small temperature gradient there, and attains high values in the vicinity of the 
upper moving wall.
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Figure 2: Temperature distribution for 
K = 0.1, f1 = 1.25, f2 = 1.5, a = 0.2, NBr = 20
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It is more pronounced in the region near the upper wall of the channel because 
of high temperature gradient there. It is seen that the Brinkman number enhances 
the entropy generation number throughout the channel and the effect of velocity 
slip parameter is to decrease the total entropy in the clear fluid region, while reverse 
effect has been observed in the porous region. Further an increment in permeability 
parameter K, viscosity ratio f1 and magnetic field parameter M increases the
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Figure 3. Temperature distribution for 
M = 0.1, R = 0.1, f2 = 1.5, a = 0.2, b = 0.7
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Figure 4. Rate of heat transfer at the upper wall for 
M = 1, R = 1, f2 = 1.5, a = 0.2
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entropy generation number in the clear fluid region and the effects are reversed in 
the porous region. The effect of radiation parameter R is to increase the entropy 
generation in the channel except the middle part of the channel where it decreases 
by increasing R.
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Figure 5. Rate of heat transfer at the upper wall for 
K = 0.1, f1 = 1.25, f2 = 1.5, a = 0.2, b = 0.7
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Figure 6. Total entropy generation Ns vs. h for 
K = 0.1, f1 = 1.25, f2 = 1.5, a = 0.2, M = 1, R = 1

To get an idea of whether the fluid friction and magnetic field irreversibility 
dominates over the heat transfer or vice versa, the Bejan number Be is introduced. 
From Figures 8-9, it can be seen that for some moderate values of Brinkman number,
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Figure 7. Total entropy generation Ns vs. h for 
K = 0.1, f1 = 1.25, f2 = 1.5, a = 0.2, b = 0.7

Bejan number is less than 0.5 in the upper half part of the channel, which shows 
that the irreversibility effects due to fluid friction and magnetic field dominates in 
that region, while the heat transfer irreversibility effects dominates at the lower 
fixed plate. The Bejan number increases at both plates and at fluid-porous interface 
by increasing the Brinkman number, while the reverse effects have been observed in 
the middle of the channel. The minimum value of Bejan number occurs somewhere 
near the upper moving plate, which shifts towards the middle of the channel by 
increasing the value of Brinkman number. The effect of velocity slip parameter on 
Bejan number is significant only in the porous region, where it decreases on increasing 
the velocity slip parameter. Further the effect of increasing magnetic field parameter 
M is to increase the Bejan number everywhere in the channel, consequently, the 
heat transfer irreversibility effects become dominant in the channel. The situation 
is reversed with increasing radiation parameter R, except the region near the upper 
moving plate. The Bejan number decreases at the lower fixed plate region due to 
a rise in radiation parameter and irreversibility due to fluid friction and magnetic 
field become dominant. At the upper moving plate, the Bejan number increases 
due to an increase in radiation parameter, consequently, heat transfer irreversibility 
become dominant.

The effect of various parameters on entropy generation due to magnetic field is 
shown in Figures 10-12. Figure 10 show that the entropy generation due to magnetic 
friction decreases near the plates on increasing the Brinkman number NBr, while 
the reverse effects have been observed in the middle of the channel. Further the 
entropy due to magnetic field increases on increasing the velocity slip parameter b 
or magnetic field parameter M. The radiation parameter R decreases the entropy 
due to magnetic field near the upper moving plate and the effect is reversed in the 
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middle of the channel. The effect of radiation parameter is not significant in the 
porous region and near the clear fluid-porous interface.

Figures 13-15 presents the effect of various parameters on entropy generation 
due to fluid friction. Figure 13 show that the entropy generation due to fluid 
friction decreases near the plates on increasing the Brinkman number NBr, while 
the reverse effects have been observed in the middle of the channel. In Figure 14, 
we can be seen that the increasing value of magnetic field parameter M decreases 
the entropy due to fluid friction throughout the channel, while the increasing value 
of radiation parameter R decreases the entropy due to fluid friction near the plates 
and the effect is reversed in the middle of the channel. Further the entropy due to
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fluid friction decreases in the clear fluid region with the increase in velocity slip 
parameter b, while the effect are reversed in the porous region, where it increases 
with the increase in velocity slip parameter as shown in Figure 15.
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Figure 10. MFI/Ns vs. h for K = 0.1, f1 = 1.25, f2 = 1.5, a = 0.2, 
M = 1, R = 1, b = 0.7
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Conclusions5.	

This paper analyzed the inherent irreversibility in a MHD shear driven flow through 
a channel partially filled with porous medium in the presence of radiation and viscous 
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dissipation. Exact solutions have been found for the governing equations. Some of 
the results obtained can be summarized as follows:
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Figure 12. MFI/Ns vs. h for K = 0.1, f1 = 1.25, f2 = 1.5, 
a = 0.2, NBr = 10, b = 0.7
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	 ∑	I ncrement in R, f1 & NBr increase the temperature throughout the channel 
while increment in K reduces the fluid temperature and when M increase 
a further increment in the clear fluid temperature is observed but it shows 
reverse effect in partially porous fluid.
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M = 1, R = 1, NBr = 10

	 ∑	T he rate of heat transfer decreases at the upper moving plate with the 
increase in the NBr value, The value of critical brinkman number further 
increases by increasing the value of b, K and decreases by increasing the 
value of f1, M, R.

	 ∑	N s increases with the increment of NBr & R in the channel except the middle 
part of the channel where it decreases and Ns enhance in clear fluid region 
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when M, f1 & K increases while decreases in partially porous region, it 
shows reverse trend for velocity slip parameter b for both the regions.

	 ∑	T he increment in Be has been observed when M & NBr increases but for 
NBr it shows reverse effect in middle of the channel and it decreases with 
the increase value of R & b but b is significant only in porous region.

	 ∑	E ntropy due to magnetic friction & fluid friction decreases near the plates 
on increasing the Brinkman number NBr & R while the reverse effects 
have been observed in the middle of the channel and an increment of M 
& b enhance entropy due to magnetic friction while decreases due to fluid 
friction except entropy due to fluid friction in porous region increases by 
the increasing value of b.

From the following observations, it is concluded that the optimal design and 
the efficient performance of a flow system or a thermally designed system can be 
improved by choosing the appropriate values of the physical parameters.
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