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Abstract: In this paper an expression for the power of control chart with standardized 
normal variate for Singly-Truncated Binomial Distribution (STBD) is obtained. 
Furthermore, numerical calculation is also done to see the effect of inspection 
error on the power curve. Also, average run length (ARL) is measured to gain the 
knowledge of the sensitivity of screening procedure.

Introduction1.	

Binomial distribution is exercised to create control chart for attributes, eitherp-
chart or d-chart when fraction defective or the number of defective is taken into 
consideration. Probability distributions frequently occur in practices which are 
of binomial nature, but for several causes zero value is overlooked. For example, 
assume that the variable understudy characterize the number of defective items 
in a manufactured lot of n items and r defects are to be anticipated and not more 
than n are observed, then remaining defects may follow a singly truncated binomial 
distribution. A special case, when r = 1 means singly-truncated binomial distribution 
(STBD). Inspection, however regarded as infertile, still remains one of the major 
activities in most quality control set ups in different types of industries. The concept 
of inspection error was first introduced by Lavin (1946) and then the analysis of 
inspection error continues to be an important area of research in statistical quality 
control. No inspection is perfect all the time. Indeed, it is generally distinguished 
that 100 percent inspection is much less than 100 percent effective in screening out 
defective items. This error can be of two types: false-positive, classifying non-defective 
as defective, and false-negative, classifying defective as non-defective. Juran and 
Gryna (1970) have indicated that in the face of monotony and fatigue, only about 
80 percent of the defective will be detected. Case et. al., (1973) have studied the 
continuous sampling plan under inspection error.

A statistical power analysis is either retrospective or prospective in which 
prospective analysis is frequently exercised to conclude a required sample size to 
accomplish target statistical power, while a retrospective analysis computes the 
statistical power of a test for a given sample size and effect size. Reynolds (1975) 
has approximated the average run length in cumulative sum control (CUSUM) 
charts. Robinson and Ho(1978) have studied average run length of geometric moving 
average chats by numerical methods. Cohen (1988) says, it is the probability that it 
will result in the conclusion that the phenomenon exists. Hawkins (1992) evaluated 
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the average run length of CUSUM charts for an arbitrary data distribution. 
Greene (2000) considered the power of a statistical test is the probability that it 
will correctly show the way to the rejection of a false null hypothesis. High (2000) 
concluded the statistical power is the ability of a test to identify an effect, if the 
effect actually exists.

The ARL, which is defined as the average number of samples before the chart 
signals out-of-control process, has been usually employed as a performance indicator 
to estimate the effectiveness of various control schemes, provided that the sampling 
interval remains constant.

In this paper an attempt has been made to obtain the power of control chart 
with for STBD under inspection error. Furthermore, an expression for the power of 
control chart with standardized normal variate for STBD is obtained. Also, ARL is 
measured to gain the knowledge of the sensitivity of monitoring procedure.

1.1. Power of Control Chart for STBD under Inspection Error. STBD is a modified 
form of a binomial distribution. A random variable xis said to follow STBD if it 
assumes only non-negative values and its probability mass function is given by:
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where, x Œ {1, 2, ..., n}.
The mean and variance of STBD is given by:
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Moreover, inspection of attributes are distinguished by two decision variables in 
which each and every item is scrutinized and categorized as good or faulty. Two 
types of error are probable, an item which is good but classified as faulty (Type-I 
error), e1, or an item which is faulty but classified as good (Type-II error), e2. If p 
is true fraction defective and p¢ is the apparent fraction defective, then we set:

	 p¢ = p(1 - e2) + (1 - p)e1	 (4)
with both e1 and e2 estimated.

In the development of the power and ARL for equation (1), the following 
assumptions are made and notations are used:

The inspection of items is utilized to determine the number of defects in a 
lot. The process has STBD with mean mp and variance sp

2. When the inspection 

error is considered the process has STBD with mean mp¢ = 
np

qn
¢

-( )1
 and varianc
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.  Inspection of the items is received to

categorize the produced units into defective and non-defective ones. The process 
is in a situation of statistical control at the time of resolving the control limits 
and the same evaluating instrument is used for later evaluation. Under the above 
assumptions, She whart control limits for STBD will be:

	 UCL = mp + 3sp; CL = mp; LCL = mp - 3sp.	 (5)
If we assume that xis a STB variate with mean mp¢ and variance s2

p¢ then, the 
power of detecting the change of process parameter for STBD is given by:

	 Pp¢ =	P{x ≥ mp¢ + 3sp¢} + P{x £ mp¢ - 3sp¢}	 (6)
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The calculation and graphical representation of Pp¢ for equation (8) is shown 
below in Table 1 and Figure 1 respectively.

1.2. Power of Control Chart for Standardized STBD. We can standardize the 
variates which can be plotted accordingly instead of plotting the number of defects 
in the control chart, this stabilizes the variables and the resulting control chart. 
When the process parameter shifts, then data is approach from STBD with mean 
mp¢ and variance sp¢

2. Thus, equation (6) can be expressed in terms of standardized 
normal variable Z as:
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When the process parameter changes from m to m¢, the power of the control chart 
for STBD is:
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	 Pp¢ =	P{Z ≥ - d + 3k-1} + P{Z £ -d - 3k-1}	 (12)
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The average run length (ARL) is the average number of points plotted on the 
chart until an out-of-control condition is signaled. It is the projected value of the 
run length distribution.

	 aRL
1

power P
= =

¢

1
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The values of ARL obtained by using (13) and its diagrammatical representation 
are shown in Table 2 and Figure 2 respectively.

Numerical Illustration2.	

For the purpose of numerical illustration, we will consider five cases as: (e1, e2) 
= (0, 0), (0.03, 0.3), (0.03, 0.1), (0.01, 0.05), (0.005, 0.02). The first case corresponds 
to sampling without inspection error while the other four represent different error 
rates. Also, to calculate the power function and ARL given by the equation (8) and 
(13) respectively, we have considered a process with a targeted value or currently 
operating value of p = 0.6, so that UCL and LCL is given by equation (5) as:

	 UCL =	9 0 3 3 6. .+  = 14.6920 = 15

	 CL =	9.0

	 LCL =	9 0 3 3 6. .-  = 3.3070 = 3

Table 1 and Figure 1 illustrates the power function and power curve respectively, 
corresponding to the above five cases.

From Table 1, one can see that when both errors are operative together, the type-I 
error has more influence on the power function for low fraction defective, while the 
type-II error dominates the effect on the power function for high fraction defective. 
The reason is that when the actual process fraction defective is quite low, there is 
little opportunity for the realization of a type-II error. However, as p increases, the 
effect of this error becomes increasingly dominant.

Table 1. Calculation of Power for STBD when n = 15

Power

p (e1, e2) = (0, 0) (e1, e2) = 
(0.03, 0.30)

(e1, e2) = 
(0.03, 0.10)

(e1, e2) = 
(0.01, 0.05)

(e1, e2) = 
(0.005, 0.02)

0.4 0.0267 0.1259 0.0387 0.0339 0.0291

0.5 0.0037 0.0477 0.0078 0.0057 0.0043

0.6 0.0003 0.0149 0.0010 0.0006 0.0004

0.7 0.0000 0.0037 0.0001 0.0000 0.0000

0.8 0.0000 0.0007 0.0000 0.0000 0.0000
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Table 2. Calculation of ARL for STBD when n = 15

ARL

p (e1, e2) = (0, 0) (e1, e2) = 
(0.03, 0.30)

(e1, e2) = 
(0.03, 0.10)

(e1, e2) = 
(0.01, 0.05)

(e1, e2) = 
(0.005, 0.02)

0.4 38 8 26 30 34

0.5 273 21 129 176 231

0.6 3599 67 956 1718 2690

0.7 114876 267 12204 33471 69806

0.8 17538838 1383 349441 1997295 7090927

From Table 2, it can be clearly observed that the type-II error has more influence 
on the ARL for low fraction defective, while the type-I error leads the effect on 
the ARL for high fraction defective. Come across the visual comparison through 
Figure 1 and Figure 2 reveals that inspection errors shifted the power and ARL 
curves to the right of the true curve. Error rate of (0.03, 0.30) has highly affected 
the power curve.
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Figure 1. Diagrammatic representation of power for n = 15

In general, inspection error results in Power and ARL curves extensively unlike 
from that obtained under error free inspection.
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Figure 2: Diagrammatic representation of ARL for n = 15

Conclusion3.	

Inspection error is an essential part of any process control, where inspections are 
taken in order to make sure that the monitored process is under control. Specifically, 
in SPC the existence of inspection error are certain to affect the effectiveness of 
the employed scheme. This paper has revealed that inspection error rates that are 
reasonable in industry seriously affect the power curve of a control chart. Especially, 
when the center line and control limits are based on a target value, the process can 
very effortlessly be moderated in-control when, indeed, it is not. When the control 
chart is based upon data obtained under inspection error, the power curve is again 
imprecise, but not nearly so critically. The effect of non-constant inspection error 
was considered. The increasing type-I error and the decreasing type-II error, as a 
function of process fraction defective, tend to moderate the effect of inspection error 
on the power curve. So far, the degree of inconsistency between the desired and 
achieved power curves will vary with the error rates encountered.
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