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Abstract. In this paper, a quantum system is considered to be formed by
two free particles in such a manner that for at least one of its states, an Ansatz
Ψ specifically modeled to present mathematical properties that could be con-
sistent with an unusual quantum entanglement is proposed. The Ansatz Ψ
is defined by an expansion in terms of the eigenfunctions of an arbitrary ob-
servable, which is associated, separately, with the considered particles, with
coefficients given by the values of functions Cn, initially free and dependent
on the quotient of the separation between the particles and their Compton
wavelength. It is shown that Ψ satisfies the corresponding Schrödinger equa-
tion under the requirement that the Cn be of the square integrable type.
The function Ψ corresponds to an entanglement which, in the absence of
both a measurement and the performance of entanglement degrading agents,
collapses to zero when a condition is satisfied.

1. Introduction

The quantum entanglement, which arouses great interest1, renewed especially
after the quantum computation proposal [4], [5], and in particular the quantum
teleportation protocol [6], [7], has as its more general and comprehensive aspects
those of its generation, preservation and measurement. More specific aspects like
criteria that permit its detection [8]-[11], the methods for its purification [12]-[14],
or its consequences for various quantum algorithms and quantum protocols [15]-
[17], has been extensively investigated. More recently, investigations are developed
to better understand the processes leading to the so-called “entanglement sudden
death” [18]-[20].

On the other hand, quantum entanglement admits a simple classification, in
two categories, consisting of: (i) physical entanglement and (ii) spurious entan-
glement. This classification is consistent with the possibility, or impossibility, of
establishing correspondences2 between mathematical properties (of abstract ob-
jects in quantum theory) and physical properties (of a specific quantum system).
The category of spurious entanglement (or mathematical entanglement3) refers to
the possibility of finding quantum states which, although they have tangled form,
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Rosen state.
1Which began in 1931, with the publication of several works by N. Rosen [1]-[3].
2A basis for this can be found in [21].
3The idea of mathematical entanglement was first introduced by H. Valqui [22].
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cannot be attributed to the physical system in question in the quantum models.
Within this category there are some concrete examples, such as those found from
an extension of the pseudo pure density matrices [23], [24]. Moreover, within the
category of physical entanglement between quantum particles, which has its dy-
namics described in terms of the pure states, and in the absence of any external
degrading influences, it is not known that there are several manifestations of this
entanglement. It could be possible, however, that there are some sectors of the
solution space of Schrödinger’s equation that admits different types of entangle-
ment, each with its own characteristics, besides those that would be common to
them.

With the purpose of theoretically probing the possibility of “existing” those
sectors (or at least one) for quantum entanglement, it is convenient to identify,
within a broad context, functions (Ansatz) that presents mathematical properties
that could correspond to a type of entanglement4 with features not completely
coincident with those that are known for a physically entangled state. Considering
the case of two identical and free quantum particles, one can imagine, for example,
a function (Ansatz) which, in the absence of both a measurement and of external
agents or degrading conditions of the entanglement, may present an entanglement
that, depending of some quantum property of the particles, collapses in the event
that they depart “sufficiently”.

The work developed here is organized and presented in the following sequence:
In section 2 the corresponding physical context is defined, which includes enlighten-
ing comments; in section 3 the complete mathematical development is presented;
In section 4 we present a discussion of the solution presented, and, finally, the
conclusions are presented.

2. Physical context

Consider a non-relativistic physical system formed by two identical quantum
particles, which we will call subsystems I and II, which from a given moment
are free. The quantum states of subsystem I will be described in terms of the
variables ~x1, separately from the states of subsystem II, described in terms of the
variables ~x2. In addition, consider an arbitrary physical observable Â associated
with these subsystems, as well as the set of their eigenfunctions, which we denote
as {u1, u2, u3, ...} for subsystem I, and as {ψ1, ψ2, ψ3, ...} for subsystem II.
These eigenfunctions are, in fact, only formally known in the sense that, because
they are associated with an arbitrary observable, we do not have explicit analytic
expressions for them. The above context, based partially on that defined by Ein-
stein, Podolsky and Rosen (EPR) in [25], is complemented here by the following
Ansatz proposal,

Ψ(~x1, ~x2) =
∑

n

Cn

(
(~x1 − ~x2)/λ

)
ψn(~x2).un(~x1), (2.1)

4Which, in principle, is only of the “mathematical” type. A second stage, based on experi-
mental arguments, could reveal whether this entanglement is or is not of the “physical” type.
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AN UNUSUAL QUANTUM ENTANGLEMENT CONSISTENT ... 3

where the coefficients are defined by the values of functions Cn, initially free5,
dependent on the variable (~x1−~x2)/λ, where λ is a parameter which, in principle,
is arbitrary; however, as will be justified further ahead, this is considered equal to
the Compton wavelength of the particles of our physical system.

2.1. General comments.
[A] The Ansatz proposed in (1), which represents a tangled function, since it is

not possible to write as the product of two factors that correspond separately to
each subsystem, has partial mathematical similarity with the EPR function, but
is essentially distinct from this not only by the presence of the coefficients Cn.
The function EPR, which can be obtained from (1) by Cn((~x1 − ~x2)/λ) = 1, ∀n,
becomes known6 in [25] and corresponds to a series expansion in the orthogonal
functions {un}. On the other hand, in our case, we are interested in the opposite
situation: given the expansion (2.1), we try to determine, if possible, the conditions
that should be imposed on the Cn so that (2.1) can be considered solution of
Schrödinger equation for two identical and free quantum particles.

[B] The reason for considering the problem defined in item [A] is that Ansatz
(1) would present two interesting properties as long as the functions Cn are of the
square integrable type. These properties would: (i) naturally collapse in the situ-
ation whereby the particles move apart “sufficiently”, which would be controlled
by the corresponding λ, and (ii) be consistent at the classical limit.

[C] In linear expansion (2.1), written in terms of the base elements of an arbi-
trary physical observable, temporal dependence does not exist (∂Ψ/∂t = 0). Thus,
considering the 3−dimensional case, so that ~x1 and ~x2 represent the coordinate
variables x1, y1, z1 and x2, y2, z2, respectively, associated with subsystems I and
II, separately, we have to consider the general Schrödinger equation,

−~2

2m
52

1 Ψ +
−~2

2m
52

2 Ψ = i~
∂

∂t
Ψ = 0 (2.2)

and not the stationary equation, which would only be appropriate in the particular
case when the functions {uk} and {ψk} corresponded to the Hamiltonian eigen-
functions of subsystem I and II, separately; a situation that is not considered
here.

3. Mathematical development

As it is common in approaches that use Ansatz, we have to identify the con-
ditions that should be imposed on its free parameters (the functions Cn, in our
case) so that the function (2.1), thus defined, can be considered a solution of the
equation (2.2). Before presenting the development itself, we will introduce, for
convenience, the following notation7: ~ξ ≡ (~x1 − ~x2)/λ.

5In the sense of not being defined.
6For being considered as the solution of Schrödinger’s equation for two free particles.
7Or by making, equivalently, ξ1 = (x1 − x2)/λ; ξ2 = (y1 − y2)/λ; ξ3 = (z1 − z2)/λ.
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We begin by substituting (2.1) in the expression on the left side (which will be
isolated) from equation (2.2), with which we write,

− ~
2

2m

∑
n

ψn(~x2)∇2
1

(
Cn(~ξ) un(~x1)

)
− ~2

2m

∑
n

un(~x1)∇2
2

(
Cn(~ξ) ψn(~x2)

)
(3.1)

In expression (3.1), we can rewrite the Laplacians that refers to the coordinate
variables that describe subsystems I and II in the following way8,

∇2
1

(
Cn(~ξ) un(~x1)

)
= Cn(~ξ)∇2

1un(~x1) +
2
λ
∇ξCn(~ξ).∇1un(~x1) +

1
λ2

un(~x1)∇2
ξCn(~ξ)

(3.2)
and also,

∇2
2

(
Cn(~ξ) ψn(~x2)

)
= Cn(~ξ)∇2

2ψn(~x2)− 2
λ
∇ξCn(~ξ).∇2ψn(~x2)+

1
λ2

ψn(~x2)∇2
ξCn(~ξ)

(3.3)
where, the symbol ∇ξ represents “Laplacian” in relation to the variables ξ1, ξ2,
ξ3. In addition, we have,

∇1Cn(~ξ) =
1
λ
∇ξCn(~ξ) & ∇2

1Cn(~ξ) =
1
λ2
∇2

ξCn(~ξ) (3.4)

and also,

∇2Cn(~ξ) = − 1
λ
∇ξCn(~ξ) & ∇2

2Cn(~ξ) =
1
λ2
∇2

ξCn(~ξ) (3.5)

Thus, we can rewrite (3.1) as follows,

− ~
2

2m

∑
n

ψn(~x2)
(

Cn(~ξ)∇2
1un(~x1) + 2∇1Cn(~ξ).∇1un(~x1) + un(~x1)∇2

1Cn(~ξ)
)

+

− ~
2

2m

∑
n

un(~x1)
(

Cn(~ξ)∇2
2ψn(~x2) + 2∇2Cn(~ξ).∇2ψn(~x2) + ψn(~x2)∇2

2Cn(~ξ)
)

(3.6)
Recalling that the sets {ψn} and {un} are well defined and that, so far, the coef-
ficients Cn are free. Therefore, the most convenient thing to do is to impose these
coefficients which verify the equation:

∑
n

ψn(~x2)
(

Cn(~ξ)∇2
1un(~x1) + 2∇1Cn(~ξ).∇1un(~x1) + un(~x1)∇2

1Cn(~ξ)
)

+

+
∑

n

un(~x1)
(

Cn(~ξ)∇2
2ψn(~x2) + 2∇2Cn(~ξ).∇2ψn(~x2) + ψn(~x2)∇2

2Cn(~ξ)
)

= 0

(3.7)
This is nothing else other than equation (2.2). The former is equivalent to assuming
that there are adequate values for the coefficients so that the function (2.1) checks
the equation (2.2).

In order to progress in the calculation, considering that we do not have explicit
expressions for the eigenfunctions {ψn} and {un}, we will perform multiple inte-
grations of the equation (3.7) with respect to the independent variables ~x1 (and

8The corresponding demonstration is very simple.
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later in relation to the variables ~x2) over a space region, which will be conveniently
defined9.

Next, we rewrite the integral of the three terms that appear in parentheses at
the top of (3.7), that is, the following sum,

Ξ ≡
∫

d3~x1Cn(~ξ)∇2
1un(~x1) + 2

∫
d3~x1∇1Cn(~ξ).∇1un(~x1)+

+
∫

d3~x1un(~x1)∇2
1Cn(~ξ) (3.8)

to make use of the following Green identity later,∫
d3x ϕ∇2ϑ =

∮
d~s. ϕ∇ϑ−

∫
d3x ∇ϕ.∇ϑ (3.9)

This will be applied to the integrals that appear with unit coefficients (integrals
containing the Laplacians) in (3.8). Thus, according to (3.8) and (3.9), we have,

Ξ =
∮

d~s · Cn(~ξ) ∇1un(~x1)−
∫

d3~x1 ∇1Cn(~ξ) · ∇un(~x1)+

+2
∫

d3~x1 ∇1Cn(~ξ) · ∇un(~x1) +
∮

d~s · un(~x1) ∇1Cn(~ξ)+

−
∫

d3~x1 ∇1Cn(~ξ) · ∇un(~x1). (3.10)

From which it follows that,

Ξ =
∮

d~s. Cn(~ξ) ∇1un(~x1) +
∮

d~s. un(~x1) ∇1Cn(~ξ). (3.11)

Now, if we consider, for example, that the integration surface is spherical, with
radius “sufficiently large” (formally considering that “r →∞”) in relation to the
value of λ, the integrals in (3.11) will cancel out in the situation where we require
that the functions Cn be, ∀n, of the square integrable type10; thus, we have Ξ = 0.

Therefore, after integrating (3.7) with respect to variables ~x1, the expression
follows as presented,

−~2

2m

∑
n

∫
d3~x1 un(~x1)

(
Cn(~ξ)∇2

2ψn(~x2) + 2∇2Cn(~ξ).∇2ψn(~x2) +

+ ψn(~x2)∇2
2Cn(~ξ)

)
= 0. (3.12)

Then in continuation, we integrate (3.12) with respect to the variables ~x2; in this
manner, we have,

−~2

2m

∑
n

∫
d3~x2 un(~x1)

∫
d3~x1

(
Cn(~ξ)∇2

2ψn(~x2) + 2∇2Cn(~ξ).∇2ψn(~x2) +

+ ψn(~x2)∇2
2Cn(~ξ)

)
= 0. (3.13)

9It is not convenient to choose a region that has linear dimensions small or comparable to λ.
10It is not essential that the surface be spherical, what matters is that on the surface that is

considered the coefficients Cn assume null values.
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Since the integrations in (3.13) refer to variables that are independent of one
another, one can change the order of integration. Taking the integrals with respect
to the variables ~x2 that appear in (3.13) we have,

Λ ≡
∫

d3~x2 Cn(~ξ)∇2
2ψn(~x2) + 2

∫
d3~x2∇2Cn(~ξ).∇2ψn(~x2) +

+
∫

d3~x2 ψn(~x2)∇2
1Cn(~ξ). (3.14)

Which, as before, can be rewritten using Green’s identity (3.9); with this, one
arrives at the expression,

Λ =
∮

d~s. Cn(~ξ) ∇2ψn(~x2) +
∮

d~s. ψn(~x2) ∇2Cn(~ξ). (3.15)

Considering a region and a spherical surface equivalent to those of the previous
case, and assuming that the functions Cn are of the square integrable type, as
before, results: Λ = 0. Thus, the expression (3.13), which resulted from integrating
equation (3.7) twice, is identically satisfied for functions Cn of the square integrable
type. In this way, the equation (2.2) is satisfied by function (2.1) under the
condition that the coefficients Cn(~ξ) correspond to the values of functions Cn that
are of the type identified above.

4. Discussion

It is clear that neither the context nor the results presented in this article de-
fine any set of specific coefficients {Cn} for the function (2.1); consequently, only
through experimental considerations (if applicable) can these be defined (mod-
eled). However, just to visualize them better, we present a theoretical example of
these coefficients, chosen arbitrarily within the considered context, as follows,

Cn

(
(~x1 − ~x2)/λ

)
= e−|~x1−~x2|2/λ2

, ∀n. (4.1)

From which it can be noted that,

Cn

(
(~x1 − ~x2)/λ

) → 0 if |~x1 − ~x2|/λ →∞, with λ finite. (4.2)

In the equation above, we have used a classical expression for the “separation” be-
tween the quantum particles, namely |~x1−~x2|. According to Quantum Mechanics,
it is the expectation value of the difference of the position operators assigned, sep-

arately, to each particle, in the state of interest, that is, < ~̂X1 − ~̂X2 >Ψ, which
provides statistical information of what could be interpreted as the separation be-
tween quantum particles; but the calculation of the corresponding integral cannot
be performed because, in (2.1), the explicit dependence of the coefficients in terms
of their variables (still) is not defined, as already mentioned. However, the use of
the expression |~x1−~x2| is justified because, in the situation where the particles are
sufficiently far apart, which is the condition that ensures the peculiar manifesta-
tion of this entanglement, it must be verified according to the Ehrenfest theorem

that < ~̂X1 − ~̂X2 >Ψ behaves as |~x1 − ~x2|, which more specifically corresponds to
the situation in which the separation between the particles is very many orders
of magnitude larger than the Compton wavelength of them. As a consequence
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of this, it can be said that the function (2.1) is not completely quantum, it is
semi-classical.

On the other hand, the choice of the parameter λ in (2.1) as the Compton
wavelength of the particles, λC = h/mc, is consistent with both the type of entan-
glement revealed here and with the classical boundary. Let’s look at the following
particular case. Since the Compton wavelength of the electron, λe, of the order of
10−13m and considering a separation between the particles of the order of 10−3m,
we directly see that |~x1 − ~x2|/λe is of the order of 1010m, for which the coefficients
Cn, which are of the integrable square type, may already have reached a null or
quasi-null value. Besides that, when formally we make λ → 0, corresponding to
the situation of a classical particle (since it results from taking m →∞, m being
the corresponding mass), the function (2.1) collapses everywhere, in particular,
when the particles (macroscopic, in this case) are very close, which is consistent
with the total absence of entanglement in the classical context.

The difference between the entanglement here revealed and the usual one is
best observed in the absence of any external agent that degrades it; furthermore,
any measurement on one of the parts of the particle system is excluded. Even so,
the entangled function (2.1) collapses when the particles are “sufficiently” spaced
from each other, which reveals an objective characteristic incompatible with the
normally understood entanglement. The mathematical fact that the coefficients
depend on the separation of particles reveals a sector previously unknown from the
solution space of the Schrödinger equation for two free particles. In the context
under discussion, the coefficients Cn can be interpreted informally as a direct
measure of the degree of survival of this unusual entanglement.

A possible physical scenario for the entanglement revealed here would be the
one corresponding to the quantum−classical boundary.

Finally, it may be interesting to note that if in the previous calculations we
make Cn

(
(~x1 − ~x2)/λ

)
= 1, ∀n, and consider the mathematical fact that the

eigenfunctions of the physical observables are of the integrable square type, it
would be shown that the EPR state itself satisfies the Schrödinger equation, was
implicitly assumed, but not demonstrated, in the famous article of 1935 [25].

5. Conclusion

In expression (2.1), we have considered an Ansatz modeled so that it could
present two specific mathematical properties: (i) one which correspond to a type
of entanglement that collapses to zero when the condition |~x1 − ~x2|/λ → ∞ is
satisfied, which may occur in the absence of both a measurement and external de-
grading factors of (usual) entanglement, and (ii) one which is being consistent at
the classical limit. The first property above can be assigned to (2.1) provided that
the functions Cn are of the square integrable type. Thus, a type of entanglement
is characterized that does not correspond to a manifestation of the usual entan-
glement. The second property can also be assigned to (2.1) since the parameter λ
corresponds to the Compton wavelength of the particles.

The unusual entanglement presented in this paper should be considered, in the
meantime, as of the “spurious” type since we have no experimental arguments in
favor of the possibility of this manifesting physically.
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The considerations presented here are not intended to exhaust the problem of
identifying the sectors of the solution space of the Schrödinger’s equation that
could be consistent with other types of quantum entanglement.
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