A Note on Maximal Ideals in Ternary Semigroups

Thawhat Changphas1 and Boonyen Thongkam

Department of Mathematics, Faculty of Science
Khon Kaen University, Khon Kaen 40002, Thailand

Centre of Excellence in Mathematics, CHE
Si Ayuttaya Rd., Bangkok 10400, Thailand

Abstract

In a commutative ring with identity element any maximal ideal is prime. Similar results hold in a commutative ordered semigroup with identity element ([2], [5]). In this note, we follow the idea in [2] by showing that the result holds on a commutative ternary semigroup with identity element. Moreover, we prove by an example that the converse of the statement does not hold, in general.

Mathematics Subject Classification: 06F05

Keywords: semigroups; ternary semigroups; maximal and prime ideals.

1 Introduction and Preliminaries

There are a number of relations between maximal and prime ideals in a commutative ring with identity element. Such as, in a commutative ring with identity element any maximal ideal is prime. In 1969, Šchwarz proved the similar result on a semigroup, in [5, Theorem 1, p. 73]. In 2003, Kehayopulu, Ponizovskii and Tsingelis generalized the Šchwarz’ result, they have done on any ordered semigroups, in [2, p. 34]. In this paper, we follow the idea of [2] by showing that in any commutative ternary semigroup with identity element any maximal ideal is prime.

Ternary algebraic systems, a nonempty set with a ternary operation, have been introduced by Lehmer in 1932 [3] and studied by Siomon in 1965 [6]. Ternary semigroups were first introduced by Banach, he showed by an example that a ternary semigroup does not necessary reduce to an ordinary semigroup.

1This research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand
Definition 1.1 Let S be a nonempty set. Then S is called a ternary semigroup if there exists a ternary operation $S \times S \times S \to S$, written as $(x_1, x_2, x_3) \mapsto [x_1x_2x_3]$, such that

$$[[x_1x_2x_3]x_4x_5] = [x_1[x_2x_3x_4]x_5] = [x_1x_2[x_3x_4x_5]]$$

for all $x_1, x_2, x_3, x_4, x_5 \in S$.

Let (S, \cdot) be a semigroup. For $x_1, x_2, x_3 \in S$, define a ternary operation on S by $[x_1, x_2, x_3] = x_1 \cdot x_2 \cdot x_3$. Then S is a ternary semigroup. The notion of ternary semigroups have been widely studied.

For nonempty subsets A_1, A_2 and A_3 of a ternary semigroup S, let

$$[A_1A_2A_3] = \{[x_1x_2x_3] \mid x_i \in A_i\}.$$

For $x \in S$, let $[xA_1A_2] = \{[x]A_1A_2\}$. For any other cases can be defined analogously.

Definition 1.2 A ternary semigroup S is said to be commutative if for any bijection α on $\{1, 2, 3\}$, $[x_1x_2x_3] = [x_{\alpha(1)}x_{\alpha(2)}x_{\alpha(3)}]$ for all $x_1, x_2, x_3 \in S$.

Definition 1.3 Let $(S, [, ,])$ be a ternary semigroup. A nonempty subset A of S is called an ideal of S if

$$[ASS] \subseteq A, [SAS] \subseteq A \text{ and } [SSA] \subseteq A.$$

In [1], p. 14, the intersection of all ideal of a ternary semigroup S containing a nonempty subset A of S is an ideal of S. It is called the ideal of S generated by A, denoted by $I(A)$. In a ternary semigroup S, $I(A)$ is of the form:

$$I(A) = A \cup [SSA] \cup [ASS] \cup [S[SSA]S].$$

(1)

Definition 1.4 Let $(S, [, ,])$ be a ternary semigroup. An ideal A of S is said to be prime if for any $x, y \in S$, $[xSy] \subseteq A$ implies $x \in A$ or $y \in A$.

Definition 1.5 An ideal A of a ternary semigroup S is called a maximal ideal of S if for any ideal T of S, $A \subseteq T \subseteq S$ implies $T = A$ or $T = S$.

Let $\{(S_i, [, ,]) \mid i \in I\}$ be a nonempty family of ternary semigroups. Consider the Cartesian product $\prod_{i \in I} S_i$ of ternary semigroups S_i for all $i \in I$. Define a ternary operation

$$\prod_{i \in I} S_i \times \prod_{i \in I} S_i \times \prod_{i \in I} S_i \to \prod_{i \in I} S_i,$$

written as

$$(x_i)_{i \in I}, (y_i)_{i \in I}, (z_i)_{i \in I} \mapsto [(x_i)_{i \in I}(y_i)_{i \in I}(z_i)_{i \in I}],$$

by

$$[(x_i)_{i \in I}(y_i)_{i \in I}(z_i)_{i \in I}] = ([x_iy_i]z_i)_{i \in I}.$$

Then $\prod_{i \in I} S_i$ is a ternary semigroup.
2 Main Results

The following lemmas are required.

Lemma 2.1 Let \(\{(S_i, [\cdot, \cdot, \cdot]) \mid i \in I\} \) be a nonempty family of ternary semigroups. If \(A_i \) is an ideal of \(S_i \) for each \(i \in I \), then the set \(\prod_{i \in I} A_i \) is an ideal of \(\prod_{i \in I} S_i \).

Proof. Since \(A_i \neq \emptyset \) for all \(i \in I \), there exists \(x_i \in A_i \) for each \(i \in I \). Since \((x_i)_{i \in I} \in \prod_{i \in I} A_i \), \(\prod_{i \in I} A_i \neq \emptyset \).

Let \((x_i)_{i \in I} \in \prod_{i \in I} A_i \) and \((y_i)_{i \in I}, (z_i)_{i \in I} \in \prod_{i \in I} S_i \). Since

\[
[x_i y_i z_i] \in [A_i S_i S_i]_i \subseteq A_i
\]

for every \(i \in I \), it follows that

\[
[(x_i)_{i \in I}(y_i)_{i \in I}(z_i)_{i \in I}] = ([x_i y_i z_i]_{i \in I} \in \prod_{i \in I} A_i.
\]

Then \([(\prod_{i \in I} A_i)(\prod_{i \in I} S_i)(\prod_{i \in I} S_i)] \subseteq \prod_{i \in I} A_i \). In the same manner, we have that

\[
[(\prod_{i \in I} S_i)(\prod_{i \in I} S_i)(\prod_{i \in I} A_i)] \subseteq \prod_{i \in I} A_i
\]

and

\[
[(\prod_{i \in I} S_i)(\prod_{i \in I} A_i)(\prod_{i \in I} S_i)] \subseteq \prod_{i \in I} A_i.
\]

Therefore, the set \(\prod_{i \in I} A_i \) is an ideal of \(\prod_{i \in I} S_i \).

Let \(S = [0, 1] \) be the closed interval of real numbers. Using the usual multiplication, \(S \) is a ternary semigroup under the ternary operation defined by

\[
[x_1 x_2 x_3] = x_1 \cdot x_2 \cdot x_3
\]

for all \(x_1, x_2, x_3 \in S \). Next, we show that any closed interval \([0, a] \) where \(a \in S \) is an ideal of \(S \).

Lemma 2.2 If \(a \in S \), then the set \(A_a = [0, a] \) is an ideal of \(S \).

Proof. Let \(a \in S \). Since \(a \in [0, a] \), \(A_a \neq \emptyset \). We shall show that \([A_a SS] \subseteq A_a \). Let \(x \in A_a \) and \(y, z \in S \). Since \(0 \leq x \leq a, 0 \leq y, z \leq 1 \), we obtain \(0 \leq xyz \leq a \). Thus \([xyz] \in A_a \). Then \([A_a SS] \subseteq A_a \). Similarly, \([SSA_a] \subseteq A_a \) and \([SA_a S] \subseteq A_a \). Therefore, \(A_a \) is an ideal of \(S \).

An element \(e \) of a ternary semigroup \(S \) is called an identity element of \(S \) if

\[
[exx] = [xex] = [xxe] = x
\]

for all \(x \in S \).

The following theorem shows that in a commutative ternary semigroup with identity element any maximal ideal is prime.
Theorem 2.3 Let \((S,[,])\) be a commutative ternary semigroup with identity element. If \(M\) is a maximal ideal of \(S\), then \(M\) is prime.

Proof. Let \(e\) be an identity element of \(S\). Assume that \(M\) is a maximal ideal of \(S\). To show that \(M\) is a prime ideal of \(S\), let \(x, y \in M\) be such that \([xSy] \subseteq M\) and \(x \notin M\). Since \(S\) is commutative, by (1), we have

\[
I(M \cup \{x\}) = (M \cup \{x\}) \cup [(M \cup \{x\})SS] \cup [SS(M \cup \{x\})]
\]

\[
\cup [S(S(M \cup \{x\})S)]
\]

\[
= (M \cup \{x\}) \cup [SS(M \cup \{x\})].
\]

Since \(M \cup \{x\} = [ee(M \cup \{x\})] \subseteq [SS(M \cup \{x\})]\), it follows that

\[
I(M \cup \{x\}) = [SS(M \cup \{x\})].
\] (2)

Since \(x \notin M\),

\[
M \subseteq M \cup \{x\} \subseteq I(M \cup \{x\}).
\]

Since \(M\) is maximal we obtain \(I(M \cup \{x\}) = S\). By (2), \(e \in [SS(M \cup \{x\})]\). Let \(z, w \in S\) and \(t \in M \cup \{x\}\) such that \(e = [zwt]\). Then

\[
y = [yey] = [yzwt]y.
\]

If \(t \in M\), then

\[
[yzwt]y = [yzwty] \in [SMS] \subseteq M,
\]

so \(y \in M\). If \(t = x\), because \(S\) is commutative, then

\[
[yzwt]y = [yzwxy] = [yzxwy] = [ywy] \in [SM] \subseteq M.
\]

So \(y \in M\). Therefore, \(M\) is a prime ideal of \(S\).

Remark The converse of Theorem 2.3 does not holds, in general. The following example shows. Let \(S = [0,1]\) be a ternary semigroup mentioned above. We consider the ternary semigroup \(S \times S\). Clearly, \(S \times S\) is commutative and has the identity \((1,1)\). Let

\[
T = S \times \{0\}(\{0,1\} \times \{0\}).
\]

By Lemma 2.2, \(A_0 = \{0\}\) is an ideal of \(S\). Since \(S\) is an ideal of \(S\), by Lemma 2.1, we obtain \(T\) is an ideal of \(S \times S\).

Let \((x, y), (z, w) \in S \times S\) be such that \([(x, y)S \times S(z, w)] \subseteq T\). Then \([(x1z), [y1w]] \in T\). Since \(yw = [y1w] = 0\), \(y = 0\) or \(w = 0\). This implies that \((x, y) \in T\) or \((z, w) \in T\). Thus \(T\) is a prime ideal of \(S \times S\). By Lemma 2.2, \(A_2 = [0,\frac{1}{2}]\) is an ideal of \(S\). Since \(T = S \times \{0\} \subset S \times A_2 \subset S \times S\) we have that \(T\) is not maximal.
References

Received: Month xx, 200x