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Abstract

In [9] respectively [10] generalized nearness structures were considered

under the fundamental aspects of unification and extension, respectively.

This interesting research was handled within the realm of the new created

concept ”Bounded Topology” [8], dealing besides classical structures (e.g.

nearness, convergence, etc. . . .) with those defined on bounded sets like

set-convergences [13], supertopologies [4] or supernear structures [7], re-

spectively. Here, we will now consider the so-called superscreen spaces,

whose are in one-to-one correspondence to certain strict topological exten-

sions, involving generalized LEADER proximities [6] and supertopologies

as well in a natural way. At last we present generalized LODATO prox-

imity spaces, here defined as preLODATO spaces including the LODATO

spaces as considered in [10] leading us to a further interesting analogon in

the realm of supernear spaces. In the ”saturated” case all last mentioned

spaces essentially coincide(up to isomorphism). As the reader will observe,

that this concept is not of utmost generality, but then he is referred to [9].
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1 Basic concepts

As usual PX denotes the power set of a set X, and we use BX ⊂ PX to denote a collection of

bounded subsets of X, also known as B-sets [13], e.g. BX has the following properties:

(b1) ∅ ∈ BX ;

(b2) B2 ⊂ B1 ∈ BX imply B2 ∈ BX ;

(b3) x ∈ X implies {x} ∈ BX .

Then for B-sets BX ,BY a function f : X −→ Y is called bounded iff f satisfies (b), e.g.

(b) {f [B] : B ∈ BX} ⊂ BY .

Definition 1.1. For a set X, we call a tripel (X,BX , N) consisting of X,B-set BX and a near-

operator N : BX −→ P (P (PX)) a supernearness space (shortly supernear space) iff the following

axioms are satisfied, e.g.

(sn1) B ∈ BX and ρ2 << ρ1 ∈ N(B) imply ρ2 ∈ N(B), where ρ2 << ρ1 iff ∀F2 ∈ ρ2∃F1 ∈ ρ1 F2 ⊃

F1;

(sn2) B ∈ BX implies BX /∈ N(B) 6= ∅;

(sn3) ρ ∈ N(∅) implies ρ = ∅;

(sn4) x ∈ X implies {{x}} ∈ N({x});

(sn5) B1 ⊂ B2 ∈ BX imply N(B1) ⊂ N(B2);

(sn6) B ∈ BX and ρ1 ∨ ρ2 ∈ N(B) imply ρ1 ∈ N(B) or ρ2 ∈ N(B), where ρ1 ∨ ρ2 : ={F1 ∪ F2 :

F1 ∈ ρ1, F2 ∈ ρ2};

(sn7) B ∈ BX , ρ ⊂ PX and {clN (F ) : F ∈ ρ} ∈ N(B) imply ρ ∈ N(B), where clN (F ) : ={x ∈ X :

{F} ∈ N({x})}.
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If ρ ∈ N(B) for some B ∈ BX , then we call ρ a B-near collection in N . For supernear spaces

(X,BX , N), (Y,BY ,M) a bounded function f : X −→ Y is called sn-map iff it satisfies (sn), e.g.

(sn) B ∈ BX and ρ ∈ N(B) imply {f [F ] : F ∈ ρ}=: fρ ∈ N(f [B]).

We denote by SN the corresponding category.

Examples 1.2. (i) For a nearness space (X, ξ) let BX be B-set. Then we consider the tripel

(X,BX , Nξ), where

Nξ(∅) : ={∅} and

Nξ(∅) : ={ρ ⊂ PX : {B} ∪ ρ ∈ ξ}, otherwise.

(ii) For a topological space (X, t) given by closure operator t let BX be B-set. Then we consider

the tripel (X,BX , Nt), where for each B ∈ BX Nt(B) : ={ρ ⊂ PX : B ∈ sec{t(F ) : F ∈ ρ}}.

(iii) For a preLEADER space (X,BX , δ) with δ ⊂ BX × PX we consider the tripel (X,BX , Nδ),

where for each B ∈ BX Nδ(B) : ={ρ ⊂ PX : ρ ⊂ δ(B)} with δ(B) : ={A ⊂ X : BδA}; hereby,

δ ⊂ BX × PX satisfies the following conditions:

(bp1) ∅δA and Bδ∅ (e.g. ∅ is not in relation to A, and analogously this is also holding for

B;

(bp2) Bδ(A1 ∪A2) iff BδA1 or BδA2;

(bp3) x ∈ X implies {x}δ{x};

(bp4) B1 ⊂ B2 ∈ BX and B1δA imply B2δA;

(bp5) B ∈ BX and BδA with A ⊂ clδ(C) imply BδC, where clδ(C) : ={x ∈ X : {x}δC}.

For preLEADER spaces (X,BX , δ), (Y,BY , γ) a bounded function f : X −→ Y is called p-map iff

f satisfies (p), e.g.

(p) B ∈ BX , A ∈ X and BδA imply f [B]γf [A]. By pLESP we denote the corresponding category.

Definitions 1.3. TEXT denotes the category, whose objects are triples E : =(e,BX , Y ) - called

topological extensions - where X : =(X, clX), Y : =(Y, clY ) are topological spaces (given by closure

operators) with B-set BX , and e : X −→ Y is a function satisfying the following conditions:

(tx1) A ∈ PX implies clX(A) = e−1[clY (e[A])];
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(tx2) clY (e[X]) = Y , which means the image of X under e is dense in Y . Morphisms in TEXT

have the form (f, g) : (e,BX , Y ) −→ (e′,BX′
, Y ′), where f : X −→ X ′, g : Y −→ Y ′ are

continuous maps such that f is bounded, and the following diagram commutes

X
e //

f
��

Y

g
��

X ′
e′
// Y ′

.

If (f, g) : (e,BX , Y ) −→ (e′,BX′
, Y ′) and (f ′, g′) : (e′,BX′

, Y ′) −→ (e′′,BX′′
, Y ′′), are TEXT-

morphisms, then they can be composed according to the rule:

(f ′, g′) ◦ (f, g) : =(f ′ ◦ f, g′ ◦ g) : (e,BX , Y ) −→ (e′′,BX′′
, Y ′′),

where ”o” denotes the composition of maps.

Remark 1.4. Observe, that axiom (tx1) in this definition is automatically satisfied if e : X −→ Y

is a topological embedding. Moreover, we only admit an ordinary B-set BX on X which need not

be necessary coincide with the power PX. In addition we mention that such an extension is called

strict iff it statisfies (tx3), e.g.

(tx3) {clY (e[A]) : A ⊂ X} forms a base for the closed subsets of Y [1].

By STREXT we denote the corresponding full subcategory of TEXT.

(iv) For a topological extension E : =(e,BX , Y ) we consider the tripel (X,BX , Ne), where for

each B ∈ BX Ne(B) : ={ρ ⊂ PX : e[B] ∈ sec{clY (e[F ]) : F ∈ ρ}}, where in general secM is

defined by setting:

secM : ={T ⊂ X : ∀M ∈M T ∩M 6= ∅}.

2 Some important isomorphisms

With respect to above examples, first let us focus our attention to some special classes of supernear

spaces.

Definition 2.1. A supernear space (X,BX , N) is called saturated iff BX is, e.g.

(s) X ∈ BX .
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Remark 2.2. Note, that in above case BX coincide with the power PX. As shown in [9] the

category NEAR, of nearness spaces and nearness preserving maps as well as TOP, the category of

topological spaces and continuous maps, can be both embedded in SNS , the full subcategory of

SN, whose objects are the saturated supernear spaces.

Definition 2.3. A supernear space (X,BX , N) then is called supergrill space if N satisfies (gri),

e.g.

(gri) B ∈ BX and ρ ∈ N(B) imply there exists γ ∈GRL(X)ρ ⊂ γ ∈ N(B), where GRL(X) : ={γ ⊂

PX : γ is grill } and γ ⊂ PX is called grill (Choquet [3]) iff

(gri1) ∅ /∈ γ;

(gri2) G1 ∪G2 ∈ γ iff G1 ∈ γ or G2 ∈ γ.

We denote by G-SN the corresponding full subcategory of SN.

Remark 2.4. With respect to example (ii) we note that (X,BX , Nt) is supergrill space.

Corollary 2.5. The category of subtopological nearness spaces and related maps is isomorphic to

a full subcategory of G-SN.

Proof. Compare with example (i).

Remark 2.6. According to example (iii) we further note that (X,BX , Nδ) is supergrill space, too.

Definition 2.7. A supergrill space (X,BX , N) then is called conic iff N satisfies (c), e.g.

(c) B ∈ BX implies ∪{ρ ⊂ PX : ρ ∈ N(B)}=:∪N(B) ∈ N(B).

We denote by CG-SN the corresponding full subcategory of G-SN.

Theorem 2.8. The category pLESP is isomorphic to the category CG-SN.

Proof. Compare with example (iii) in connexion with [10].

Remark 2.9. Hence, LEADER proximity spaces [6] can be now considered as special conic su-

pergrill spaces. Moreover each supertopological space (X,BX ,Θ) is leading us to the specific conic

supergrill space (X,BX , NΘ) by setting for each B ∈ BX : NΘ(B) : ={ρ ⊂ PX : ρ ⊂ secΘ(B)}. In

this context Θ : BX −→ FIL(X) : ={F ⊂ PX : F is filter} is a neighbourhood function, satisfying

following conditions, e.g.
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(stop1) Θ(∅) = PX;

(stop2) B ∈ BX and U ∈ Θ(B) imply U ⊃ B;

(stop3) B ∈ BX and U ∈ Θ(B) imply there exists a set V ∈ Θ(B) such that always U ∈ Θ(B′)∀B′ ∈

BXB′ ⊂ V .

Conversely, we define for such a conic supergrill space (Y,BY ,M) the following neighbourhood

function by setting: ΘM (B) : ={V ⊂ X : V ∈ sec∪M(B)}. Hence, STOP can be considered as a

subcategory of CG-SN, too!

Remark 2.10. Here, we point out, that a supergrill space (X,BX , N) is conic if and only if for

each B ∈ BX ∪N(B) ∈ GRL(X) ∩N(B).

Proposition 2.11. Let (Y, t) be a topological space given by closure operator t and BX B-set with

X ⊂ Y . We put BδtA iff B ∩ t(A) 6= ∅ for each B ∈ BX and A ⊂ X. Then (X,BX , δt) is

preLEADER space

Remark 2.12. Now, it seems to be of interest to characterize preLEADER spaces, whichever are

induced by a topological space Y as above, so that a bounded set B is near to an arbitrary one iff

B intersects its closure in Y . But in the following we will solve this problem under more general

conditions!

3 Topological extensions and related superscreen spaces

Taking into account example (iv), we will now consider the problem for finding a one-to-one corre-

spondence between topological extensions and related supernear spaces.

Definition 3.1. Let be given a supernear space (X,BX , N). For B ∈ BX , C ∈ GRL(X) is called

B-screen in N iff it satisfies

(scr1) B ∈ C ∈ N(B);

(scr2) A ∈ C and A ⊂ clN (F ) imply F ∈ C;

(scr3) B ∈ sec{clN (C) : C ∈ C}.

Remark 3.2. We point out that for each B ∈ BX with x ∈ B xN : ={A ⊂ X : x ∈ clN (A)} is

B-screen in N , moreover xN is maximal in N({x}) \ {∅}, ordered by inclusion .
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Definition 3.3. A conic supernear space (X,BX , N) then is called superscreen space iff it satisfies

(scr), e.g.

(scr) B ∈ BX\{∅} implies UN(B) is B-screen in N .

(see also 2.10).

Remark 3.4. According to remark 2.4 we claim that (X,BX , Nt) even is superscreen space.

Lemma 3.5. For a topological extension (e,BX , Y ), (X,BX , Ne) (see example (iv)) is a superscreen

space such that clNe = clX .

Proof. First, we will show the equality of the closure operators. So, let be A ∈ PX and x ∈ clX(A).

Then, by (tx1) e(x) ∈ clY (e[A]), hence {A} ∈ Ne({x}), and x ∈ clNe(A) follows. Conversely, let

x ∈ clNe(A).

Then {A} ∈ Ne({x}). Consequently {e(x)} ∩ clY (e[A]) 6= ∅; hence there exists y ∈ clY (e[A])

and y = e(x). As a consequence of (tx1) we get x ∈ e−1[clY (e[A])] ⊂ clX(A), which was to be

proven. Secondly, it is easy to check the axioms (sn1) to (sn6).

to (sn7): Let be {clNe(F ) : F ∈ ρ} ∈ Ne(B) for ρ ∈ PX,B ∈ BX and without restriction B 6=

∅. Then e[B] ∈ sec{clY (e[A]) : A ∈ {clNe(F ) : F ∈ ρ}}. For F ∈ ρ we get e[B] ∩

clY (e[clNe(F )]) 6= ∅. Taking into account that clNe(F ) = clX(F ) and in addition (tx1) is

valid, we get e[B] ∩ clY (e[F ]) 6= ∅, hence ρ ∈ Ne(B) results. (X,BX , Ne) is conic, because

without restriction B ∈ BX\{∅} and F ∈ ∪Ne(B) imply there exists ρ ∈ Ne(B) with

F ∈ ρ, hence e[B]∩ clY (e[F ]) 6= ∅ by hypothesis, and consequently ∪Ne(B) ∈ Ne(B) results.

(X,BX , Ne) is superscreen space. Let be B ∈ BX\{∅}, we put:

CB : ={T ⊂ X : e[B] ∩ clY (e[T ]) 6= ∅}.

Obviously, CB ∈ GRL(X). Moreover we will verify that CB is B-screen in N .

to (scr1): B ∈ CB, since e[B]∩clY (e[B]) 6= ∅; CB ∈ Ne(B), because T ∈ CB implies e[B]∩clY (e[T ]) 6= ∅

by definition.

to (scr2): T ∈ CB and T ⊂ clNe(F ) imply e[B] ∩ clY (e[T ]) 6= ∅, hence e[B] ∩ clY (e[clNe(F )]) 6= ∅. But

clNe(F ) = clX(F ), and by applying (tx1) we get e[B] ∩ clY (e[F ]) 6= ∅, which shows F ∈ CB.

7

945

35



to (scr3): T ∈ CB implies e[B] ∩ clY (e[B]) 6= ∅, hence x ∈ e−1[clY (e[T ])] results for some x ∈ B,

which shows x ∈ clX(T ) according to (tx1). But then x ∈ clNe(T ) follows, and consequently

B ∩ clNe(T ) is valid. So, at last we conclude CB = ∪N(B).

Definition 3.6. We denote by SCR-SN the full subcategory of CG-SN, whose objects are the

superscreen spaces.

Theorem 3.7. Let F : TEXT−→SCR-SN be defined by

(a) For a TEXT-object (e,BX , Y ) we put: F (e,BX , Y ) : =(X,BX , Ne); for a TEXT-morphism

(f, g) : (e,BX , Y ) −→ (e′,BX′
, Y ′) we put: F (f, g) : = f . Then F : TEXT−→SCR-SN is a

functor.

Proof. With respect to 3.5 we already know that F (e,BX , Y ) is an object of SCR-SN. Let (f, g) :

(e,BX , Y ) −→ (e′, BX′
, Y ′) be a TEXT-morphism such that F (e,BX , Y ) = (X,BX , Ne) and

F (e′,BX′
, Y ′) = (X ′,BX′

, Ne′). It has to be shown that f : (X,BX , Ne) −→ (X ′,BX′
, Ne′) pre-

serves B-near collections for each B ∈ BX . Without loss of generality let be B ∈ BX\{∅} and

ρ ∈ Ne(B), hence e[B] ∈ sec{clY (e[F ]) : F ∈ ρ}. Our goal is to verify that fρ ∈ Ne′(f [B]). So

let be A ∈ fρ, hence A = f [F ] for some F ∈ ρ, and consequently e[B] ∩ clY (e[F ]) 6= ∅ results by

hypothesis. Choose y ∈ clY (e[F ]) with y ∈ e[B], hence y = e(x) for some x ∈ B. Then g(y) =

g(e(x)) = e′(f(x)) ∈ e′(f [B]). On the other hand we have g(y) ∈ g[clY (e[F ])] ⊂ clY ′(g[e[F ]]) =

clY ′(e′[f [F ]]) = clY ′(e′[A]) according to 1.3, which shows that e′[f [B]] ∈ sec{clY (e′[A]) : A ∈ fρ}

implying at last fρ ∈ Ne′(f [B]). Then the reminder is clear!

4 Superscreen spaces and strict topological extensions

In the previous paragraph we have found a functor from TEXT to SCR-SN. Now, we are going to

introduce a related one from SCR-SN to STREXT.

Lemma 4.1. For a supernear space (X,BX , N) we put: XS : ={C ⊂ PX : C is B-screen in N

for some B ∈ BX}, and for each AS ⊂ XS we set: clXS (AS) : ={C ∈ XS : 4AS ⊂ C}, where

4AS : ={F ⊂ X : ∀C ∈ AS F ∈ C}, so that by convention 4AS = PX if A2 = ∅. Then clXS is

topological closure operator on XS.
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Proof. But for this verification the reader is referred to [10].

Theorem 4.2. For superscreen spaces (X,BX , N), (Y,BY ,M) let f : X −→ Y be a sn-map. Define

a function fS : XS −→ Y S by setting for each C ∈ XS : fS(C) : ={D ⊂ Y : f−1[clM (D)] ∈ C}.

Then the following statements are valid:

(i) fS : (XS , clXS ) −→ (Y S , clY S ) is a continuous map;

(ii) The equality fS ◦ eX = eY ◦ f holds, where eX : X −→ XS denotes that function which

assigns the {x}-screen xN to each x ∈ X (see also remark 3.2.).

Proof. First, let be C ∈ XS , we must show that fS(C) ∈ Y S · fS(C) ∈ GRL(Y ), since C ∈ GRL(X)

and f−1 respectively clM are compatible with finite union. By hypothesis C ∈ N(B) for some

B ∈ BX , hence fC ∈ M(f [B]), because f is sn-map. Now, we will show that {clM (D) : D ∈

fS(C)} << fC.

clM (D) for some D ∈ fS(C) implies f−1[clM (D)] ∈ C, hence clM (D) ⊃ f [f−1[clM (D)]] ∈ fC.

According to (sn7) fS(C) ∈M(f [B]) follows. f [B] ∈ fS(C), since f−1[clM (f [B])] ⊃ f−1[f [clN (B)]] ⊃

B ∈ C by hypothesis. Now, let be D ∈ fS(C) and D ⊂ clM (F ); we have to verify F ∈ fS(C). By

hypothesis f−1[clM (D)] ∈ C. f−1[clM (D)] ⊂ clN (f−1[clM (F )]), because x ∈ f−1[clM (D)] implies

f(x) ∈ clM (D); but clM (D) ⊂ clM (clM (D)) ⊂ clM (F ), hence f(x) ∈ clM (F ). Consequently,

x ∈ f−1[clM (F )] ⊂ clN (f−1[clM (F )]) results. Since C especially satisfies (scr2) f−1[clM (F )] ∈ C is

valid, which shows F ∈ fS(C). At last let be D ∈ fS(C); we have to verify f [B] ∩ clM (D) 6=

∅. By hypothesis f−1[clM (D)] ∈ C, hence B ∩ clN (f−1[clM (D)]) 6= ∅. Consequently, ∅ 6=

f [B ∩ clN (f−1[clM (D)])] ⊂ f [B] ∩ f [clN (f−1[clM (D)])] ⊂ f [B] ∩ clM [f(f−1[clM (D)])] ⊂ f [B] ∩

clM (clM (D)) ⊂ clM (D) results, since f is sn-map.

to (i): Let be AS ⊂ XS , C ∈ clXS (AS) and suppose fS(C) /∈ clY S (fS [AS ])Then 4fS [AS ] 6⊂ fS(C),

hence D /∈ fS(C) for some D ∈ 4fS [AS ], which means f−1[clM (D) /∈ C.

But 4AS ⊂ C implies f−1[clM (D)] /∈ D for some D ∈ AS . Therefore D /∈ fS(D), which leads

us to a contradiction, since D ∈ 4fS [AS ].

to (ii): Let x be an element of X. We will prove that the equality fS(eX(x)) = eY (f(x)) is valid. To

this end let be T ∈ eY (f(x)), hence f(x) ∈ clM (T ), and consequently x ∈ f−1[clM (T )] follows

which shows f−1[clM (T )] ∈ xN = eX(x). Thus T ∈ fS(eX(x)), which proves the inclusion

eY (f(x)) ⊂ fS(eX(x)). Consequently, since eY (f(x)) is maximal in M({f(x)}) \ {∅} (see
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remark 3.2 and note also that {clM (D) : D ∈ fS(eX(x))} << fxN ∈ M({f(x)}), since by

supposition f is sn-map) we obtain the desired equality.

Theorem 4.3. Let G : SCR-SN−→STREXT be defined as follows:

(a) For any superscreen space (X,BX , N) we put: G(X,BX , N) : =(eX ,BX , XS) with X : =(X, clN )

and XS : =(XS , clXS );

(b) for any sn-map f : (X,BX , N) −→ (Y,BY ,M) we put G(f) : =(f, fS).

Then G : SCR-SN−→STREXT is a functor.

Proof. With respect to (sn7) clN is topological closure operator, and by 4.1. this also holds for

clXS . Therefore we get topological spaces with B-set BX , and eX : X −→ XS is a map according

to 4.2.(ii). Now, we have to verify that (eX ,BX , XS) satisfies the axioms (tx1) to (tx3). But, as

above, the reader is referred to [10].

At present it is interesting to see, how the composite functor F ◦G is working on the category

SCR-SN.

Theorem 4.4. Let G : SCR-SN−→STREXT and F : TEXT−→SCR-SN be the functors given in

theorems 3.7 and 4.3.. For each object (X,BX , N) of SCR-SN let t(X,BX , N) denote the identity

map t(X,BX , N) : = idX : F (G(X,BX , N)) −→ (X,BX , N). Then t : F ◦G −→ 1SCR-SN is natural

equivalence from F ◦G to the identity functor 1SCR−SN , i.e. idX : F (G(X,BX , N)) −→ (X,BX , N)

is in both directions a sn-map for each object (X,BX , N), and the following diagram commutes for

each sn-map f : (X,BX , N) −→ (Y,BY ,M):

F (G(X,BX , N))
idX //

F (G(f))
��

(X,BX , N)

f
��

F (G(Y,BY ,M))
idY // (Y,BY ,M).

(1)

Proof. The commutativity of the diagram is obvious, because F (G(f)) = f . It remains to prove

that in each case .F (G(X,BX , N))
idX

//(X,BX , N)
idX

//F (G(X,BX , N)) is sn-map for any object

(X,BX , N) ∈ SCR-SN. To fix the notation, letN1 be such that F (G(X,BX , N)) = F (eX ,BX , XS) =

(X,BX , N1). First, we show that for each B ∈ BX\{∅}, ρ ∈ N1(B) implies ρ ∈ N(B). To this end

assume ρ ∈ N1(B), then eX [B] ∈ sec{clXS (eX [F ]) : F ∈ ρ}. It suffices to show ρ is subset of ∪N(B),
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because by hypothesis (X,BX , N) is conic. F ∈ ρ implies there exists y ∈ eX [B] ∩ clXS (eX [F ]),

hence y = eX(x) = xN ∈ clXS (eX [F ]) for some x ∈ B. Consequently, 4eX [F ] ⊂ XN results, and

F ∈ xN follows. But xN ∈ N({x}), according to (sn7), implying xN ∈ N(B) by (sn5) showing at

last that F ∈ ∪N(B).

Conversely, let be B ∈ BX\{∅} and ρ ∈ N(B). We have to verify eX [B] ∈ sec{clXS (eX [F ]) :

F ∈ ρ}. F ∈ ρ implies F ∈ ∪N(B), hence B ∩ clN (F ) 6= ∅ according to 3.3.. Consequently there

exists x ∈ B with x ∈ clN (F ). Then xN = eX(x) ∈ eX [B]. It remains prove4eX [F ] ⊂ eX(x) = xN .

But A ∈ 4eX [F ] implies F ⊂ clN (A), hence clN (F ) ⊂ clN (A) follows, which shows x ∈ clN (A)

is valid, and A ∈ xN results.

Comment 4.5. As a résumé we point out that those conic supergrill spaces (X,BX , N) which can

be extended to a certain topological one have a neat internal description; the condition is that for

non-empty B-near collections in N ∪N(B) is B-screen in N ! Hence, sn-maps are all extendible!

Corollary 4.6. If (X,BX , N) is separated, that means N satisfies (sep), e.g.

(sep) x, z ∈ X and {{z}} ∈ N({x}) imply x = z, then eX : X −→ XS is injective. Con-

versely, for a T1-extension (e,BX , Y ), where e is a topological embedding and Y T1-space,

then (X,BX , Ne) is separated; because x, z ∈ X and {{z}} ∈ Ne({x}) imply e[{x}] ∈

sec{clY (e[F ]) : F ∈ {z}}, hence {e(x)} ∩ clY ({e(z)}) 6= ∅, which means e(x) ∈ clY ({e(z)}).

Since Y is T1-space e(x) = e(z) follows, and x = z results by hypothesis.

5 preLODATO spaces and some other related cate-

gories

b-supertopologies were studied by Dôıtchinov [4] in order to generate compactly determined ex-

tension of given space. LODATO proximity spaces are serving for an analogous purpose under

more weaker conditions. In [9] was proven that there exists an one-to-one correspondence between

certain ”topological” extensions and related paraclan spaces in generalizing the theorem of Bentley

[2]. Moreover, the mentioned relationship also includes a corresponding theorem for LODATO

spaces which leading us to the famous theorem of LODATO [11] by accordant specialising!

Definition 5.1. For a set X, we call a tripel (X,BX , δ) consisting of X, B-set BX and δ ⊂ BX×X

a preLODATO space iff the following conditions are satisfied.
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(bp1) ∅δA and Bδ∅ (e.g. ∅ is not in relation to A, and analogously this is also holding for B);

(bp2) Bδ(A1 ∪A2) iff BδA1 or BδA2;

(bp3) x ∈ X implies {x}δ{x};

(bp4) B1 ⊂ B2 ∈ BX and B1δA imply B2δA;

(bp5) B ∈ BX and BδA with A ⊂ clδ(C) imply BδC, where clδ(C) : ={x ∈ X : {x}δC};

(bp6) B1 ∪B2 ∈ BX and (B1 ∪B2)δA imply B1δA or B2δA;

(bp7) B,A ⊂ X, clδ(B) ∈ BX and clδ(B)δA imply BδA;

(bp8) B1, B2 ∈ BX and B1δB2 imply B2δB1.

Remark 5.2. According to 1.2(iii) we note that any preLODATO space is a preLEADER space.

By pLOSP we denote the corresponding full subcategory of pLESP.

Additionally we note that any LODATO space [10] is a preLODATO space.

Example 5.3. Let be given a b-supertopological space (X,BX ,Θ) in the sense of Dôıtchinov,

where BX is B-set on a set X and Θ : BX −→FIL(X) : ={F ⊂ PX : F is filter} function satisfying

the following conditions, e.g.

(bSTOP1) Θ(∅) = PX;

(bSTOP2) B ∈ BX and U ∈ Θ(B) imply U ⊃ B;

(bSTOP3) B ∈ BX and U ∈ Θ(B) imply there exists a set V ∈ Θ(B) such that always U ∈ Θ(B′)∀B′ ∈

BX B′ ⊂ V ;

(bSTOP4) B1 ∪B2 ∈ BX implies Θ(B1 ∪B2) = Θ(B1) ∩Θ(B2);

(bSTOP5) B1, B2 ∈ BX and B1 ∈secΘ(B2) imply B2 ∈secΘ(B1).

Then we consider the tripel (X,BX , δΘ) by setting BδΘA iff A ∈secΘ(B)for each B ∈ BX , A ⊂

X. Hence, we point out that (X,BX , δΘ) is a preLODATO space, too. The above assignment

is ”bi-functoriell”, so that the category b-STOP of b-supertopological spaces and related maps

can be considered as a subcategory of pLOSP. In this connexion we refer to [12] and note that

Efremovic̆ proximity spaces also can be dealt with.
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Definition 5.4. A conic supergrill space (X,BX , N) is called proximal iff N is linked, dense and

presymmetric by satisfying (l), (d) and (psy), respectively, e.g.

(l) B1 ∪B2 ∈ BX and ρ ∈ N(B1 ∪B2) imply {F} ∈ N(B1) ∪N(B2)∀F ∈ ρ;

(d) B ⊂ X and clN (B) ∈ BX imply N(clN (B)) = N(B);

(psy) B ∈ BX\{∅} and ρ ∈ N(B) imply {B} ∈ ∩{N(F ) : F ∈ ρ ∩ BX}.

We denote by P-SN the corresponding full subcategory of CG-SN (see also 2.7.).

Theorem 5.5. The category pLOSP is isomorphic to the category P-SN.

Proof. According to 1.2.(iii) and 5.1 respectively we conversely set for a proximal supernear space

(Y,BY ,M) BPM
A iff {A} ∈M(B) for each B ∈ BX , A ⊂ X.

Remark 5.6. According to [10] we claim that in the ”saturated” case the category LOPROX of

LODATO proximity spaces and p-maps is isomorphic to the category LO-PNS as well as to the

category P-SNS . Hence, LO-PNS and P-SNS are isomorphic, too.

Diagram 5.7. (Some relationship between former mentioned categories).

SN

pLOSP ≈ P − SN

55

PN

OO

LO − PN ∼= LOSP

55

PNS ≈

OO

NEAR

LO − PNS ∼= LOPROX

OO 55

≈ P − SNS

dd

b− STOP

OO

EFPROX

jj

OO

Remark 5.8. Now, it seems to be of interest to characterize those proximal supernear spaces,

whichever are induced by a topological space Y such that B-near collections are described by the

fact that the closure of its members in Y meets the corresponding one of B in Y . But we will

solve this problem in a forthcoming paper and only mention here that its solution is leading us to a

further generalization of LODATO’s theorem, moreover Dôıtchinov’s result also can be dealt with.
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