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Abstract. The paper is devoted to the study of optimal control of stochastic dif-
ferential delay equations and their applications. By using the Dynkin formula and
solution of the Dirichlet-Poisson problem, the Hamilton-Jacobi-Bellman (HJB) equa-
tion and the inverse HJB equation are derived. Application is given to a stochastic
model in economics.

AMS Subject Classifications: 34K50, 34K35, 34K60, 91B70

Keywords: Stochastic differential delay equations; Stochastic optimal control; Dynkin
formula; Hamilton-Jacobi-Bellman equation; Dirichlet-Poisson problem; Economics
applications; Ramsey economics model with delay and randomness.

1. Introduction

In our presentation at the Conference on Stochastic Modelling of Complex Systems
SMOCS05 [8] the following controlled stochastic differential delay equation (SDDE)
was introduced:

x(t) = x(0) +

∫ t

0

a(x(s− 1), u(s))ds+

∫ t

0

b(x(s− 1), u(s))dw(s),

where x(t) = φ(t), t ∈ [−1, 0], is a given continuous process, u(t) is a control process
and w(t) is a standard Wiener process.
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We presented Dynkin formula and solution of Dirichlet-Poisson problem for the
SDDE. These results can be obtained from the relevant results about the Dynkin for-
mulas and boundary value problems for multiplicative operator functionals of Markov
processes [13]. By using the Dynkin formula and the solution of the Dirichlet-Poisson
problem, the Hamilton-Jacobi-Bellman (HJB) and the inverse HJB equations have
been stated. We have also found the stochastic optimal control and optimal perfor-
mance for the SDDE. The results there have been presented without proof.

In present paper, we give a complete proof of two theorems from the talk: Theorem
1 (HJB equation) and Theorem 2 (inverse of the HJB equation) about the stochastic
optimal control. For the definitions related to the stochastic optimal control and
stochastic optimal performance see [11]. Application is given to a stochastic model in
economics, a Ramsey model [4, 12] that takes into account the delay and randomness
in the production cycle.

The Ramsey model is described by the equation

dK(t) = [AK(t− T )− u(K(t))C(t)] dt + σ(K(t− T ))dw(t)

where K is the capital, C is the production rate, u is a control process, A is a positive
constant, σ is a standard deviation of the ”noise”. The ”initial capital”

K(t) = φ(t), t ∈ [−T, 0],

is a continuous bounded positive function. For this stochastic economic model the
optimal control is found to be umin = K(0) · C(0), and the optimal performance is

J(K,umin) = K2(0)
2 + K2(0)·C2(0)

2 +
∫ 0

−T
φ2(θ) dθ

= K2(0)
2 (1 + C2(0)) +

∫ 0

−T
φ2(θ) dθ.

By time rescaling, the delay T can be normalized to T = 1, which will be our
assumption in the theoretical considerations that follow. The obtained results are
valid however for general delay T > 0.

2. Controlled Stochastic Differential Delay Equations

2.1. Assumptions and existence of solutions

Below we recall some basic notions and facts from [3, 6, 7, 10] necessary for subsequent
exposition in this paper. Let x(t), t ∈ [−1,∞) be a stochastic process, Fαβ(x) be a
minimal σ-algebra with respect to which x(t) is measurable for every t ∈ [α, β]. Let
w(t), t ∈ [−1,∞) be a Wiener process with w(0) = 0, and let Fαβ(dw) be a minimal
Borel σ-algebra such that w(t) − w(s) is measurable for all t, s with α ≤ t ≤ s ≤ β.
Let u(t) ∈ U , t ∈ [−1,∞) be a stochastic process whose values can be chosen from
the given Borel set U and such that u(t) is Fαβ(u)-adapted for all t ∈ [α, β].

Let C denote the metric space of all continuous functions defined on the interval
[−1, 0] with the standard norm |h| = sup−1≤t≤0 |h(t)|. One also has the notation
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ht(s) := h(t + s), s ∈ [−1, 0]. If h(t) is continuous for t ≥ −1 then ht ∈ C. For
definitions, notations, and basics of the deterministic differential delay equations see
e.g. [5].

Let a(·, ·), b(·, ·) be continuous functionals defined on C × U . A stochastic process
x(t) is called a solution of the stochastic differential delay equation

dx(t) = a(xt, u(t))dt+ b(xt, u(t))dw(t), t ∈ [0,∞) (2.1)

if
F−1t(x) ∨ F0t(dw) ∨ F0t(u)

is independent of Ft∞(dw) for every t ∈ [0,∞). Here F−1t(x) ∨ F0t(dw) ∨ F0t(u)
stands for the minimal σ-algebra containing F−1t(x), F0t(dw), and F0t(u), and

x(t) − x(s) =

∫ t

s

a(xr, u(r))dr +

∫ t

s

b(xr, u(r))dw(r),

where the last integral is the Ito integral.
Equation (2.1) is meant in the integral form

x(t) = x(0) +

∫ t

0

a(xs, u(s))ds+

∫ t

0

b(xs, u(s))dw(s) (2.2)

with the initial condition x(t) = φ(t), t ∈ [−1, 0], where φ ∈ C is a given continuous
function. Therefore, we assume that the processes φ(t), t ∈ [−1, 0], w(t) and u(t), t ≥
0, are defined on the probability space (Ω,F ,Ft, P ) and Ft := F−1t(x) ∨ F0t(dw) ∨
F0t(u).

Let the following conditions be satisfied for equation (2.2).

A.1 a(φ, u) and b(φ, u) are continuous real-valued functionals defined on C × U ;

A.2 φ ∈ C is continuous with probability 1 in the interval [−1, 0], independent of
w(s), s ≥ 0, and E|φ(t)|4 <∞;

A.3 ∀φ, ψ ∈ C:

|a(φ, u) − a(ψ, u)| + |b(φ, u) − b(ψ, u)| ≤ K

∫ 0

−1

|φ(θ) − ψ(θ)|dθ, (2.3)

with |a(0, u)| + |b(0, u)| ≤M for some M,K > 0 and all u ∈ U .

Under assumptions A.1-A.3 the solution x(t) of the initial value problem (2.2)
exists and is a unique stochastic continuous process [3, 6, 10]. The function xt is a
Markov process. The solution can be viewed at time t ≥ 0 as an element xt of the
space C, or as a point x(t) in R. We shall use both interpretations in this paper, as
appropriate.
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2.2. Weak infinitesimal operator of Markov process (xt, x(t))

In the case of stochastic differential delay equations the solution x(t) is not Markovian.
However, we can Markovianize it by considering the pair (xt, x(t)) := (x(t+ s), x(t)),
s ∈ [−1, 0], i.e., the path of the process from t−1 till t and the value of the process at
t. The pair is a strong Markov process to which we can apply the weak infinitesimal
generator (see e.g. [2]).

A real valued functional J(xt, x(t)) on C × R is said to be in the domain of Au,
the weak infinitesimal operator (w.i.o.), if the limit

lim
t→0+

((Eu
x,x(0)J(xt, x(t)) − J(x, x(0)))/t) = q(x, x(0), u),

x = x0 = φ ∈ C, u ∈ U

exists pointwise in C × U , and

lim
t→0+

sup
x,u

|Eu
x,x(0)q(xt, x(t), u) − q(x, x(0), u)| = 0.

Here xt := xt(θ) = x(t + θ), θ ∈ [−1, 0], is in C and Eu
x is the expectation under the

conditional probability with respect to x and u. We set AuJ(x, x(0)) := q(x, x(0), u).
For an open and bounded set H × G ⊂ C × R denote by Ãu

H×G the w.i.o. of
(x̃t, x̃(t)) := (xt, x(t)) stopped at τH×G := inf{t : (xt, x(t)) 6∈ H ×G} [2].

Let F : R → R be continuous and bounded on bounded sets and set J(xt, x(t)) :=
F (x(t)). Then if F ∈ D(Ãu

G) and Ãu
GF = q is bounded on bounded sets, the restriction

of F to G is in D(Ãu
G), and

Ãu
GJ(x) = LuF (x(0)) = q(x(0), u) :=

= F ′(x(0))a(x(0), u) + F ′′(x(0))1
2b

2(x(0), u)
(2.4)

where u = u(0) (see[10]).
It is not simple to completely characterize the domain of the weak infinitesimal

operator of either processes φ or x(t). For example, in the case of J(x) = x(−1) the
operator is not necessarily in D(Ãu

G), since x(t) can be not differentiable.
It is possible to study functionals J(x(0)) whose dependence on φ ∈ C is in

the form of an integral. For example, let the above conditions be satisfied for the
functional

Jφ(x(0)) :=

∫ 0

−1

F (φ(s), x(0)) ds,

where F : C × R → R is continuous. Let in addition F (φ, x), F ′
x(φ, x), F ′′

xx(φ, x) be
continuous in φ, x. Then Jφ(x) ∈ D(Ãu

G) and

Ãu
GJφ(x(0)) = q(x(0)) = F (φ(0), x(0)) − F (φ(−1), x(0))+

+

∫ 0

−1

LuF (φ(s), x(0)) ds,
(2.5)

where the operator Lu is defined by (2.4) and acts on F as a function of x(0) only
(see [10]).
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2.3. Dynkin formula for SDDEs

Let x(t) be a solution of the initial value problem (2.2). For the strong Markov process
(xt, x(t)) consider the functional

J(xt, x(t)) :=

∫ 0

−1

F (x(t + θ), x(t)) dθ.

From (2.5) we obtain the following Ito formula for the functional J :

J(xt, x(t)) =J(x, x(0)) +

∫ t

0

F (x(s), x(s)) ds−

−

∫ t

0

F (x(s− 1), x(s)) ds +

∫ t

0

∫ 0

−1

LuF (x(t+ θ), x(s)) dθds+

+

∫ t

0

∫ 0

−1

σ(x(s − 1))F ′
x(x(t + θ), x(s)) dθdw(s).

Let τ be a stopping time for the strong Markov process (xt, x(t)) such that
Ex,x(0)|τ | <∞. Then we have the following Dynkin formula [13]

Ex,x(0)J(xτ , x(τ)) =J(x, x(0)) + Ex,x(0)

∫ τ

0

F (x(s), x(s)) ds

−

∫ τ

0

F (x(s − 1), x(s)) ds

+ Ex,x(0)

∫ τ

0

∫ 0

−1

LuF (xs(θ), x(s)) dθds

=J(x, x(0)) + Ex,x(0)

∫ τ

0

Ãu
GJ(xs, x(s)) ds,

(2.6)

where Ãu
G is defined by (2.5).

2.4. Solution of Dirichlet-Poisson problem for SDDEs

Let G ⊂ R and H ⊂ C be bounded open sets, and ∂(H ×G) be the regular boundary
of the set H ×G. Let ψ(x, x(0)) be a given function continuous on the closure of the
set H ×G and bounded on ∂(H ×G). Let function F (x, x(0), u) ∈ C(C × R × U) be
such that

Ex,x(0)

[
∫ 0

−1

∫ τH×G

0

|F (φ(θ), x(s), u(s))| dsdθ

]

<∞ ∀ (x, x(0)) ∈ H ×G,

where τH×G = inf{t : (xt, x(t)) 6∈ H ×G} is the exit time from the set H ×G.
Define

J(x, x(0), u) :=Ex,x(0)

[
∫ 0

−1

∫ τH×G

0

F (xs(θ), x(s), u(s)) dsdθ

]

+ Ex,x(0)

[

ψ(xτH×G
, x(τH×G))

]

, (x, x(0)) ∈ H ×G.
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Then [13]

ÃuJ(x, x(0), u) = −

∫ 0

−1

F (φ(θ), x, u) dθ, in H ×G ∀u ∈ U

and
lim

t↑τH×G

J(xt, x(t), u) = ψ(xτH×G
, x(τH×G)) ∀(x, x(0)) ∈ H ×G.

2.5. Statement of the Problem

We assume that the cost function is given in the form

J(x, x(0), u) :=Ex,x(0)

[
∫ 0

−1

∫ τH×G

0

F (xs(θ), x(s), u(s)) dsdθ

+ ψ(xτH×G
, x(τH×G))

]

,

(2.7)

where ψ, F and τH×G are as in subsection 2.4. In particular, τH×G can be a fixed time
t0. We assume that Ex,x(0)|τH×G| < ∞, ∀(x, x(0)) ∈ H × G. Similar cost functions
are considered in [11] for systems without the delay.

The problem is as follows. For each (x, x(0)) ∈ H ×G find a number J∗(x, x(0))
and a control u∗ = u∗(x, x(0)), ω) such that

J∗(x, x(0)) := inf
u
{J(x, x(0), u)} = J(x, x(0), u∗),

where the infinum is taken over all Ft -adapted processes u(t) ∈ U . Such a con-
trol u∗, if it exists, is called an optimal control and J∗(x, x(0)) is called the optimal
performance.

3. Hamilton-Jacobi-Bellman Equation for SDDEs

We consider only Markov controls u(t) := u(xt, x(t)). For every ν ∈ U define the
following operator

(AνJ)(x, x(0)) =F (x(0), x(0), ν(0)) − F (x(−1), x(0), ν(0))

+

∫ 0

−1

LνF (φ(θ), x(0), ν(0)) dθ, ν(0) := ν(x, x(0)),
(3.1)

where operator Lν is given by (2.4), and let

J(x, x(0)) :=

∫ 0

−1

F (φ(θ), x(0), ν(0)) dθ.

With x(t) being the solution of equation (2.2), for each control u the pair (xt, x(t))
is an Ito diffusion with the infinitesimal generator (AJ)(x, x(0)) = (AuJ)(x, x(0)).
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Theorem 3.1. (HJB-equation) Let

J∗(x, x(0)) = inf{J(x, x(0), u)|u := u(x, x(0)) - Markov control}. (3.2)

Suppose that J ∈ C2(H ×G) and the optimal control u∗ exists. Then

inf
ν∈U

[
∫ 0

−1

F (φ(θ), x, ν) dθ + (AνJ∗)(x, x(0))

]

= 0, ∀(x, x(0)) ∈ H ×G, (3.3)

and
J∗(x, x(0)) = ψ(x, x(0)), ∀(x, x(0)) ∈ ∂(H ×G),

where F and ψ are as in (2.7), and operator Aν is given by (3.1).
The infinum in (3.2) is achieved when ν = u∗(x, x(0)), where u∗ is optimal. In

other words,

∫ 0

−1

F (φ(θ), x, u∗) dθ + (Au∗

J∗)(x, x(0)) = 0, ∀(x, x(0)) ∈ H ×G, (3.4)

which is equation (3.3).

Proof. Now we proceed to prove (3.3). Fix (x, x(0)) ∈ H ×G and choose a Markov
control process u. Let α ≤ τH×G be a stopping time. By using the strong Markov
property of (xt, x(t)) we obtain for J(x, x(0), u):

Ex,x(0)[J(xα,x(α), u)]

=Ex,x(0)

[

Exα,x(α)

[
∫ 0

−1

∫ τH×G

0

F (xs(θ), x(s), u(s)) dsdθ

+ ψ(xτH×G
, x(τH×G))

]]

=Ex,x(0)

[

Ex,x(0)

[

Sα

(
∫ 0

−1

∫ τH×G

0

F (xs(θ), x(s), u(s)) dsdθ

+ ψ(xτH×G
, x(τH×G))

)

/Fα

]]

=Ex,x(0)

[

Ex,x(0)

[
∫ 0

−1

∫ τH×G

0

F (xs(θ), x(s), u(s)) dsdθ

+ ψ(xτH×G
, x(τH×G))

]

/Fα

]

=Ex,x(0)

[
∫ 0

−1

∫ τH×G

0

F (xs(θ), x(s), u(s)) dsdθ

+ ψ(xτH×G
, x(τH×G)) −

∫ 0

−1

∫ α

0

F (xs(θ), x(s), u(s)) dsdθ

]

=J(x, x(0), u) − Ex,x(0)

[
∫ 0

−1

∫ α

0

F (xs(θ), x(s), u(s)) dsdθ

]

,
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where Sα is a shift operator (see, e.g., [2]). Therefore

J(x, x(0), u) =Ex,x(0)

[
∫ 0

−1

∫ α

0

F (xs(θ), x(s), u(s)) dsdθ

]

+ Ex,x(0) [J(xα, x(α), u(α))] .

(3.5)

Now let V ⊂ H×G be of the form V := {(y, y(0)) ∈ H×G : |(y, y(0))−(x, x(0))| < ǫ}.
Let α = τV be the first exit time of the pair (xt, x(t)) from V.

Suppose the optimal control u∗ exists. For every ν ∈ U choose:

u =

{

ν(x, x(0)), if (x, x(0)) ∈ V

u∗(x, x(0)), if (x, x(0)) ∈ H ×G \ V.
(3.6)

Then J∗(xα, x(α)) = J(u∗, xα, x(α)), and by combining (3.5) and(3.6), we obtain

J∗(x, x(0)) ≤ J(x, x(0), ν) =Ex,x(0)

[
∫ 0

−1

∫ α

0

F (xs(θ), x(r), ν(r)) dθdr

]

+ Ex,x(0) [J(xα, x(α), ν)] .

By Dynkin formula (2.6) we have

Ex,x(0) [J(xα, x(α), ν)] = J(x, x(0)) + Ex,x(0)

[
∫ α

0

AνJ(xr, x(r), ν) dr

]

,

where Aν is defined by (3.1). By substituting the latter into the previous inequality
we obtain

J∗(x, x(0)) ≤Ex,x(0)

[
∫ 0

−1

∫ α

0

F (xs(θ), x(s), ν(s)) ds

]

+ J(x, x(0))

+ Ex,x(0)

[
∫ α

0

AνJ(xr, x(r), ν) dr

]

,

or

Ex,x(0)

[
∫ 0

−1

∫ α

0

F (xr(θ), x(r), ν(r)) drdθ +

∫ α

0

AνJ(xr, x(r), ν) dr

]

≥ 0.

Therefore,

Ex,x(0)

[
∫ 0

−1

∫ α

0

F (xr(θ), x(r), ν(r)) dθdr+

+

∫ α

0

(AνJ)(xr , x(r), ν) dr

]

/Ex,x(0)[α] ≥ 0.

By letting ǫ→ 0 we derive
∫ 0

−1

F (x, x(0), ν) dθ + (AνJ)(x, x(0), ν) ≥ 0,

which combined with (3.4) gives (3.3). �
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Theorem 3.2. (Converse of the HJB-equation) Let g be a bounded function in
C2(H ×G) ∩C(∂(H ×G)). Suppose that for all u ∈ U the inequality

∫ 0

−1

F (x, x(0), u) dθ + (Aug)(x, x(0)) ≥ 0, (x, x(0)) ∈ H ×G

and the boundary condition

g(x, x(0)) = ψ(x, x(0)), (x, x(0)) ∈ ∂(H ×G) (3.7)

are satisfied. Then g(x, x(0)) ≤ J(x, x(0), u) for all Markov controls u ∈ U and for
all (x, x(0)) ∈ H ×G.

Moreover, if for every (x, x(0)) ∈ H ×G there exists u0 such that

∫ 0

−1

F (x, x(0), u0) dθ + (Au0

g)(x, x(0)) = 0, (3.8)

then u0 is a Markov control, g(x) = J(x, x(0), u0) = J∗(x, x(0)), and therefore u0 is
an optimal control.

Proof. Assume that g satisfies hypotheses (3.7) and (3.8). Let u be a Markov control.

Then AuJ ≥ −
∫ 0

−1 F (x, x(0), u) dθ for all u in U , and we have by Dynkin formula
(2.6)

Ex,x(0) [g(xτr
, x(τr))] = g(x, x(0)) + Ex,x(0)

[
∫ τr

0

(Aug)(xs, x(s)) ds

]

≥ g(x, x(0)) − Ex,x(0)

[
∫ 0

−1

∫ τr

0

F (xs(θ), x(s), u(s)) dθds

]

,

where
τr := min{r, τH×G, inf{t > 0 : |xt| ≥ r}}, r > 0.

By taking the limit as τr → +∞ this gives

g(x, x(0)) ≤ Ex,x(0)

[
∫ 0

−1

∫ τr

0

F (xs(θ), x(s), u(s)) dθds + ψ(xτr
, x(τr))

]

≤ lim
τr→∞

[

Ex,x(0)

[
∫ 0

−1

∫ τr

0

F (xs(θ), x(s), u(s)) dθds + ψ(xτr
, x(τr))

]]

= Ex,x(0)

[
∫ 0

−1

∫ τH×G

0

F (xs(θ), x(s), u(s)) dθds + ψ(xτH×G
, x(τH×G))

]

= J(x, x(0), u),

which proves the first assertion of the theorem. If u0 is such that (3.8) holds, then
the above calculation gives the equality. This completes the proof. �
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Remark 3.1. The Hamilton-Jacobi-Bellman (HJB) equation and the Inverse HJB
equation are classical results in the optimization theory. Theorems 1 and 2 above pro-
vide their extensions to the case of stochastic differential delay equations considered
in this paper. Both statements assume the existence of the optimal control u0 as a
hypothesis. The existence of the optimal control in a general setting is an important
and difficult problem by itself. Under certain conditions on functions a, b, F, φ and
the boundary of the set H×G, and with the compactness of the set of control values,
one can show, by using related general results from nonlinear PDEs, that a smooth
function J satisfying equation (3.3) and boundary condition J∗(x, x(0)) = φ(x, x(0))
exists. Then by applying a measurable selection theorem one can find a measurable
function u∗ satisfying equation (3.4) (or equation (3.8)) for almost all points in H×G.
For more details of this possible approach to tackle the existence problem see for ex-
ample [1, 9]. We plan to address this general problem of existence of optimal control
in our future research. In the next section we show the existence of the optimal control
and find it explicitly for the Ramsey SDDE Model with a given cost function.

4. Economics Model and Its Optimization

4.1. Description of the model

In 1928 F.R. Ramsey introduced an economics model describing the rate of change of
capital K and labor L in a market by a system of ordinary differential equations [12].
With P and C being the production and consumption rates, respectively, the model
is given by the system

dK(t)

dt
= P (t) − C(t),

dL(t)

dt
= a(t)L(t), (4.1)

where a(t) is the rate of growth of labor (population).
The production, capital and labor are related by the Cobb-Douglas formula,

P (t) = AKα(t)Lβ(t), where A,α, β are some positive constants [4]. In certain cir-
cumstances the dependence of P on K and L is linear, i.e. α = β = 1, which will
be our assumption throughout this section. We shall also assume that the labor is
constant, L(t) = L0, which is true for certain markets or relatively short time inter-
vals of several years. Therefore, the production rate and the capital are related by
P (t) = BK(t), where B = AL0. Another important assumption we make is that the
production rate is subject to small random disturbances, i.e. P (t) = BK(t)+”noise”.
System (4.1) then results in the equation

dK(t)

dt
= BK(t) + ”noise” − C(t),

which can be rewritten in the differential form as

dK(t) = [BK(t) − C(t)] dt+ σ(K(t)) dw(t),
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where w(t) is a standard Wiener process, σ(K) is a given (small) real function, char-
acteristic of the noise.

The original model of Ramsey is based on the assumption of instant transfor-
mation of the investments. This can be accepted as satisfactory in only very rough
models. In the reality the trasformation of the invested capital cannot be accom-
plished instantly. A certain essential period of time is normally required for this
transformation, such as the length of the production cycle in many economical situ-
ations. Therefore, a more accurate assumption is that the rate of change of capital
K at present time t depends on the investment that was made at time t− T , where
T is the cycle duration required for the creation of working capital. This leads to the
following delay differential equation

dK(t) = [BK(t− T ) − C(t)] dt+ σ(K(t− T )) dw(t).

Our next assumption is that the consumption rate C can be controlled by the available
amount of the capital, i.e. it is of the form C(t)u(K(t)), where u(·) is a control. By
normalizing the delay to T = 1 (by time rescaling) one arrives at the equation

dK(t) = [BK(t− 1) − u(K(t))C(t)] dt + σ(K(t− 1)) dw(t). (4.2)

The initial investment of the capital K is naturally represented in equation (4.2) by
a given initial function φ

K(t) = φ(t), t ∈ [−1, 0]. (4.3)

Therefore, we propose to study a modified Ramsey model with delay and random
perturbations given by the system (4.2)-(4.3).

4.2. Optimization calculation

Usually one wants to minimize the investment capital under the assumption of labor
being constant. Let us choose the following cost function

J(K,u) =
K2(0)

2
+

∫ 0

−1

φ2(θ) dθ +
u2(0)

2
.

The operator AuJ has the following form

AuJ =
K2(0)

2
+ φ2(0) +

u2(0)

2
−

[

K2(0)

2
+ φ2(−1) +

u2(0)

2

]

+

[

K(0) · (B ·K(0) − u(0) · C(0)) +
1

2
σ2(K(0))

]

,

since

F (K(0),K(0), u(0)) =
K2(0)

2
+ φ2(0) +

u2(0)

2
,

F (K(0),K(−1), u(0)) =
K2(0)

2
+ φ2(−1) +

u2(0)

2
,

LuJ(K,u) = K(0)

(

B ·K(0) − u(0) · C(0) +
1

2
σ2(K(0))

)

.
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From (3.1) we obtain the following HJB-equation

inf
u

[

K2(0)

2
+

∫ 0

−1

φ2(θ) dθ +
u2(0)

2
+ φ2(0) − φ2(−1) +B ·K2(0)

+ u(0) ·K(0) · C(0) +
1

2
σ2(K(0))

]

= 0,

or equivalently,

inf
u

[

u2(0) − 2K(0)C(0)u(0) + (2φ2(0) − 2φ2(−1) + 2

∫ 0

−1

φ2(θ) dθ

+K2(0)(1 + 2B) + σ2(K(0)))

]

= 0.

Let

4K2(0)C2(0) ≥ 4

(

2φ2(0) − 2φ2(−1) + 2

∫ 0

−1

φ2(θ) dθ

+K2(0)(1 + 2B) + σ2(K(0))

)

,

or

K2(0) · (C2(0) − 3 − 2B) ≥ 2

∫ 0

−1

φ2(θ) dθ − 2φ2(−1) + σ2(K(0)),

since K(0) = φ(0). Hence, the infinum is achieved when

u(0) = −

(

−
2K(0) · C(0)

2

)

= K(0) · C(0).

Therefore umin = K(0) · C(0) and

J(K,umin) =
K2(0)

2
+
K2(0) · C2(0)

2
+

∫ 0

−1

φ2(θ) dθ =

=
K2(0)

2
(1 + C2(0)) +

∫ 0

−1

φ2(θ) dθ.

Note that in the case of general delay T > 0 in model (4.2)-(4.3) the last expression
for J remains valid with the integration range [−T, 0].
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