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Abstract. This paper considers a mathematical model to assess the effects of
carbon monoxide (CO) on sickle cell hemoglobin (HbS) during HbS polymer melting.
Assuming a buffer solution in which a mixture of HbS solution and fibers is rapidly
mixed with CO, the model describes the subsequent dynamic interaction of four phases
of the HbS components. Stability analysis of the model is presented in the CO-free
case, the CO-saturated case and the general case. Numerical experiments are reported
which monitor the effects of CO levels in the buffer solution. The model supports the
proposition that CO binds directly to solution phase as well as polymerized HbS, and
it predicts that while all the HbS becomes CO-bound at equilibrium, not all the HbS
fibers are necessarily melted, indicating the presence of CO-bound fiber molecules.
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1. Introduction

Sickle cell disease is an inherited genetic blood disorder that affects red blood cells.
The disease is due to the mutation of the sixth position of the beta globin chain of
hemoglobin, where the amino acid glutamic acid (which is hydrophilic) of normal
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hemoglobin (HbA) is replaced with the amino acid valine (which is hydrophobic) to
become sickle cell hemoglobin (HbS). The mutated HbS may become hard, sticky
and shaped like sickles due to lack of oxygen. When these hard and pointed red
cells go through the small blood vessels, vascular occlusion may occur, causing pain,
tissue damage and low blood count (anemia) complications which constitute sickle
cell disease. The disease occurs most commonly in Africa, the Mediterranean, and
India; about eight percent of African-Americans have sickle cell trait–carrying the
sickle cell gene but not showing the disease.

Sickle cell pathogenesis is known to be driven by a polymerization-depolymeriza-
tion cycle which coincides with the circulation cycle of blood of about 15 seconds
fueled by the re-oxygenation in the lungs. Sickle hemoglobin exists as isolated units
in the red cells when oxygenated. But when the deformed HbS release oxygen to
the peripheral tissues, they tend to stick together and form long chains (polymers).
The HbS polymers are held together by very weak forces, and when the red cells
return to the lungs and pick up oxygen again, the hemoglobin molecules resume their
solitary existence. HbS molecules, which have a life of about sixteen days, undergo
repeated processes of polymerization and depolymerization. While the mechanism
for polymerization is well-described as double nucleations by Ferrone et al [7], [8], the
mechanism for depolymerization is not at all known [1], and its characterization is
of interest in the design of sickle cell relief therapies. The purpose of this paper is
to describe and analyze a mathematical model that considers how carbon monoxide
(CO) affects HbS during HbS polymer melting, and to use the model to understand
the mechanism for the HbS fiber melting process.

The authors in [2] have considered the effect of CO on HbS during fiber melting,
and they have proposed a model in the form of a system of linear equations to compare
with their experimental data. Their model was based on the assumptions that fibers
only melt from the ends, and that CO can only bind to solution phase HbS. The
present paper will describe a nonlinear model that extends the original two-species
model of [8] to a four-species one which incorporates CO-binding to polymerized
HbS. Theoretical models for ligand-induced melting of HbS fibers are desirable as
inexpensive tools for the preliminary study and evaluation of the effects of ligands
such as CO on HbS fiber melting.

The rest of this article is organized as follows. In the next section, the original
model formulated in [8] and the extension in [2] are recalled, and an extended model
is described. Results on the dynamics of the extended model are presented in Sec-
tion 3 together with their proofs and a discussion about their biological significance.
Numerical experiments on CO effects are described and discussed in Section 4, with
a concluding discussion in Section 5.
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2. The Mathematical Model

2.1. The preliminary Models

We first recall the basic models proposed in [8] and [2]. The fundamental observation
in [8] is that the growth of HbS fibers is described by the equation

−
dCm(t)

dt
= (k+Cm(t) − k−)Cp(t) (2.1)

(equation (3), [8] page 614) where Cp(t) and Cm(t) are the respective molar con-
centrations of the polymerized and solution-phase HbS, while k+ and k− are the
respective rate constants for polymerization and melting in a given solution buffer.

Here, we understand that the term − dCm(t)
dt

is the rate of disappearance of monomers,
the term k+Cm(t)Cp(t) is due to monomers associating to heterogeneous nucleus (ex-
isting polymers) and the term −k−Cp(t) is due to dissociation of monomers from
polymers.

In [2], based on the hypothesis that polymer melting only occurs at the polymer
ends, the authors made the assumption that the number of polymers would be con-
stant. They then used Cp to denote the constant number of polymers and replaced

the Cp(t) in (2.1) by Cp, they let the equilibrium relation k+ = k−

Cs
(where Cs is the

solubility concentration of the buffer) and let kd = k− indicate the de-oxygenated
(de-oxy) melting rate constant, so that the equation (2.1) was rewritten as

dCm(t)

dt
= −kd(

Cm(t)

Cs

− 1)Cp. (2.2)

Letting C∗

p (t) (note: we changed the original notation C′

p(t) used in [2] and [3] to
avoid possible confusion with derivative notation) be the concentration of hemoglobin
in polymer phase, and with the assumption that the total HbS molar concentration
would be constant, that is C∗

p (t) + Cm(t) = Ctot =constant, equation (2.2) leads to

dC∗

p (t)

dt
= kd(

Cm(t)

Cs

− 1)Cp. (2.3)

To investigate the effect of CO binding to sickle cell polymers during melting,
the authors in [2] made a differentiation of the solution phase population Cm(t) into
two sub-populations: Cco

m (t), the molecules which are CO-bound, and Cd
m(t), those

which are not CO-bound (or de-oxy). Under the assumption that CO can only bind to
solution phase hemoglobin molecules, the rate of change of Cco

m (t) only comes from the
binding of CO to Cd

m(t). This leads to the following three-equation model proposed
in [2] to monitor the experimentally observed concentration of de-oxy HbS molecules
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in experiments incorporating CO-mediation:

dCd
m(t)

dt
= −kd(

Cd
m(t)

C1.53
s

− 1)Cp − km[CO]Cd
m(t) (2.4)

dCCO
m (t)

dt
= km[CO]Cd

m(t) (2.5)

dC∗

p (t)

dt
= kd(

Cd
m(t)

C1.53
s

− 1)Cp (2.6)

where the following nomenclature is used:

Cd
m(t): Molar concentration of deoxy HbS in the solution phase

C∗

p (t): Molar concentration of deoxy HbS cells in the polymer phase
Cco

m (t): Molar concentration of CO-bound HbS in the solution phase
Cp: Molar concentration of HbS polymer fibers
[CO]: Molar concentration of carbon monoxide
km: CO binding (ligation) rate for solution phase HbS
kd: Dissociation (melting) rate constant of de-oxy HbS cells
C1.53

s : Solubility concentration of 1.53M phosphate buffer

Notice that system (2.4)-(2.5)-(2.6) is linear and can be solved in the following
order: first solve (2.4) for Cd

m(t) (because Cp is a constant), then solve (2.5) for Cco
m (t)

and (2.6) for C∗

p (t). However, the experimental data did not fit the dynamics of the
solution ([2]) and the authors rejected the model as unsuitable.

2.2. The Extended Model

To extend the model (2.4)-(2.5)-(2.6), we first rescind the assumption that ‘the con-
centration of polymers in the HbS sample remains constant during melting.’ As in [8],
we use Cp(t) and Cm(t) to represent molar concentrations of the polymerized HbS
and solution-phase HbS respectively, and set Cp(t) + Cm(t) =constant. From the
kinetic equation (2.1), we thus obtain the following modification of (2.2) and (2.3):

dCm(t)

dt
= −kd(

Cm(t)

Cs

− 1)Cp(t) (2.7)

dCp(t)

dt
= kd(

Cm(t)

Cs

− 1)Cp(t). (2.8)

Next, we incorporate CO-mediation as in [2], but we rescind the assumption
that ‘CO can only bind to solution phase hemoglobin molecules’. This allows us
to differentiate the polymerized population Cp(t) into two sub-populations: Cco

p (t),

which are CO-bound, and Cd
p (t), which are not CO-bound, or de-oxy. This is in

addition to the differentiation of Cm(t) into two sub-population Cco
m (t) and Cd

m(t).
These considerations result in the segregation of HbS cells into the following class
compartments for the HbS cells during polymer melting:
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De-oxy CO-bound

Polymers Cd
p Cco

p

Monomers Cd
m Cco

m

Now, the assumed CO-binding results in a loss from the class of de-oxy HbS in solution
phase Cd

m(t), which translates into a gain for the CO-bound solution phase HbS Cco
m (t),

with a CO-mediated binding rate constant km. Similarly, the assumed CO-binding
to polymer phase molecules, with CO-mediated binding rate constant kp results in a
loss from the Cd

p (t) class, which effects a gain to the Cco
p (t) class. Finally, the loss

of these polymer phase molecules, with CO-mediated dissociation rate constant kco

leads to a gain for the Cco
m (t) population.

To derive the equations involving the CO-free HbS components, we first let Cm(t)
in (2.7)-(2.8) be replaced by Cd

m(t) and Cp(t) by Cd
p (t). The CO-binding to the

population Cd
m(t) results in a loss to Cd

m(t), and the CO-binding to the population
Cd

p (t) results in a loss from Cd
p (t), so we add the term −km[CO]Cd

m(t) to the right

hand side of (2.7), and −kp[CO]Cd
p (t) to the right hand side of (2.8). These result in

dCd
m(t)

dt
= −kd(

Cd
m(t)

Cs

− 1)Cd
p (t) − km[CO]Cd

m(t) (2.9)

and
dCd

p (t)

dt
= kd(

Cd
m(t)

Cs

− 1)Cd
p (t) − kp[CO]Cd

p (t)) (2.10)

Similarly, To derive the equations involving the CO-bound HbS components, we
let Cm(t) in (2.7)-(2.8) be replaced by CCO

m (t) and Cp(t) by CCO
p (t). Note that the

loss from Cd
m(t) is a gain for Cco

m (t), and the loss from Cd
p (t) is a gain for Cco

p (t), so

we add the term km[CO]Cd
m(t) to the right hand side of (2.7) and add kp[CO]Cd

p (t)
to the right hand side of (2.8). These result in

dCco
m (t)

dt
= kco(1 −

Cd
m(t)

Cco
s

)Cco
p (t) + km[CO]Cd

m(t) (2.11)

and
dCco

p (t)

dt
= −kco(1 −

Cd
m(t)

Cco
s

)Cco
p (t) + kp[CO]Cd

p (t) (2.12)

The model (2.9)-(2.10)-(2.11)-(2.12) allows CO-binding to polymers, and that
melting may occur at the endpoints as well as the surfaces of polymer fibers. It is a
slight variant of the model described in [3] where the Cd

p (t) term in (2.9) and (2.10)

is C∗

p , and the term
Cd

m(t)
Cco

s
in (2.11) and (2.12) is absent.
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3. Dynamical Properties of the Model

In this section, we analyze the extended sickle cell model to obtain the dynami-
cal properties. Before proceeding, we re-order (2.9)-(2.10)-(2.11)-(2.12) into (2.9)-
(2.11)-(2.10)-(2.12), and simplify notation by replacing (Cd

m(t), Cco
m (t), Cd

p (t), Cco
p (t))

by (x, y, z, u), and (kd, km[CO], kco, kp[CO], Cs, C
co
s ) by (k1, k2, k3, k4, C1, C2) to write

the system as follows:

dx

dt
= −k1(

x

C1
− 1)z − k2x (3.1)

dy

dt
= k3(1 −

y

C2
)u + k2x (3.2)

dz

dt
= −k4z + k1(

x

C1
− 1)z (3.3)

du

dt
= −k3(1 −

y

C2
)u + k4z. (3.4)

3.1. Main Results

The main dynamical results of the model are stated below.
In the CO-free case ([CO] = 0), there is no CO-mediated melting (kco = 0), and

thus, k2 = 0, k3 = 0 and k4 = 0, so that the system (3.1)-(3.4) becomes

dx

dt
= −k1(

x

C1
− 1)z (3.5)

dz

dt
= k1(

x

C1
− 1)z (3.6)

and its dynamical behavior is summarized in the following results:

Theorem 3.1. (CO-free case) Let x0 ≥ 0, z0 ≥ 0, x0 + z0 = c and x(t, x0, z0),
z(t, x0, z0) be the solution of (3.5)-(3.6) with x(0) = x0, z(0) = z0.

(i) If z0 = 0 then x(t, x0, 0) = x0 = c and z(t, x0, 0) = 0 for all t ≥ 0.

(ii) Assume c ≤ C1. If 0 ≤ x0 < c and z0 > 0, then x(t, x0, z0) is increasing
on [0,∞) and limt→∞ x(t, x0, z0) = c, z(t, x0, z0) is decreasing on [0,∞) and
limt→∞ z(t, x0, z0) = 0.

(iii) Assume c > C1. If x0 = C1, z0 = c−C1 then x(t, x0, z0) = x0 and z(t, x0, z0) =
z0 for all t ≥ 0; if x0 6= C1 and z0 > 0, then x(t, x0, z0) → C1 monotonically
and z(t, x0, z0) → c − C1 monotonically.
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In the CO-saturated case, x(t) = 0 and z(t) = 0, and the system (3.1)-(3.4) is
reduced to

dy

dt
= k3(1 −

y

C2
)u (3.7)

du

dt
= −k3(1 −

y

C2
)u. (3.8)

The dynamical behaviors are described as follows:

Theorem 3.2. (CO-saturated case) Let y0 ≥ 0, u0 ≥ 0, y0 +u0 = c, and y(t, y0, u0),
u(t, y0, u0) be the solution of system (3.7)-(3.8) with initial condition y(0) = y0,
u(0) = u0.

(i) If u0 = 0 then y(t, y0, 0) = y0 = c and u(t, y0, 0) = 0 for all t ≥ 0.

(ii) Assume c ≤ C2. If 0 ≤ y0 < c and u0 > 0, then y(t, y0, u0) is increasing
on [0,∞) and limt→∞ y(t, y0, u0) = c, u(t, y0, u0) is decreasing on [0,∞) and
limt→∞ u(t, y0, u0) = 0.

(iii) Assume c > C2. If y0 = C2, u0 = c−C2 then y(t, y0, u0) = y0 and u(t, y0, u0) =
u0 for all t ≥ 0; if y0 6= C2 and u0 > 0, then y(t, y0, u0) → C2 monotonically
and u(t, y0, u0) → c − C2 monotonically.

For the general system (3.1)-(3.4), we have the following:

Theorem 3.3. (general case) Let x0 ≥ 0, y0 ≥ 0, z0 ≥ 0, u0 ≥ 0, x0+y0+z0+u0 = c,
and x(t, x0, y0, u0), y(t, x0, y0, u0), z(t, x0, y0, u0), u(t, x0, y0, z0, u0) be the solution of
system (3.1)-(3.4) with x(0) = x0, y(0) = y0, z(0) = z0, u(0) = u0.

(i) The solution preserves nonnegativity, i.e., x(t) ≥ 0, y(t) ≥ 0, z(t) ≥ 0 and
u(t) ≥ 0 for all t ≥ 0 if x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0 and u(0) ≥ 0.

(ii) For any initial data x0, y0, u0, z(t, x0, y0, 0, u0) = 0, x(t, 0, y0, 0, u0) = 0,
u(t, x0, y0, 0, 0) = 0 and y(t, 0, 0, 0, 0) = 0 for all t ≥ 0.

(iii) If c ≤ C2, then the solution (x(t), y(t), z(t), u(t)) → (0, c, 0, 0) as t → ∞.

(iv) If c > C2, then the solution (x(t), y(t), z(t), u(t)) → (0, C2, 0, c−C2) as t → ∞.

3.2. Proofs of Main Results

The proofs of the above theorems are given below.

Proof of Theorem 3.1. Note that the system (3.5)-(3.6) implies that dx
dt

+ dz
dt

= 0,
and therefore x + z = x0 + z0 = c, a constant; if we substitute z = c − x into (3.5),
we then obtain a scalar equation,

dx

dt
= −k1(

x

C1
− 1)(c − x). (3.9)
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Equation (3.9) has two equilibria: x = C1 and x = c. Let x(t, x0) be the solution
of (3.9) with x(0) = x0. Analyzing the phase portrait for cases c < C1, c = C1 and
c > C1, it is easy to see that: if c ≤ C1, then x(t, c) = c for all t ≥ 0; the solution
x(t, x0) with x0 < c is increasing and it approaches c as t → ∞ (Figures 1a and 1b);
if c > C1, then x(t, c) = c, and the x(t, x0) with x0 6= C1 and x0 < c approaches C1

monotonically as t → ∞ (see Figure 1c). Using the fact that z(t) = c−x(t), Theorem
1 is proved.

C1c
o

c=C1 cc1

(1a) c < C1 (1b) c = C1 (1c) c > C1

Figure 1: Phase line portrait of dx
dt

= −k1(
x

C1
− 1)(c − x)

Proof of Theorem 3.2. The proof is very similar to that of Theorem 3.1, and we
omit it.

For the proof of Theorem 3.3, we first present two lemmas to simplify discussion.

Lemma 3.1. Let function w(t) be continuously differentiable on interval I = [0, τ),
0 < τ ≤ ∞. Assume that w(0) ≥ 0 and w′(t1) > 0 whenever w(t1) = 0, t1 ∈ I; then
w(t) > 0 on (0, τ).

Proof. Assume the conclusion were not true. If w(0) > 0, then there is a t1 > 0 such
that w(t) > 0 on [0, t1) and w(t1) = 0, which imply that w′(t1) ≤ 0. But by the given
condition we should have w′(t1) > 0 since w(t1) = 0; thus there is a contradiction,
and we must have w(t) > 0 on the whole interval [0, τ). If w(0) = 0 then w′(0) > 0;
and thus w(t) > 0 at least in some open interval (0, a). A similar argument shows
that we must have w(t) > 0 for all t ∈ (0, τ).

Lemma 3.2. Consider the system

dx

dt
= −k1(

x

C1
− 1)z − k2x, (3.10)

dz

dt
= −k4z + k1(

x

C1
− 1)z. (3.11)

with k1 > 0, k2 > 0, k4 > 0, and C1 > 0. If x0 ≥ 0 and z0 > 0, then x(t) > 0,
z(t) > 0 for all t > 0, and x(t) → 0, z(t) → 0 exponentially. If z0 = 0 and x0 ≥ 0,
then z(t) = 0 and x(t) ≥ 0 for all t ≥ 0, and x(t) → 0 exponentially.
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Proof. Let

a(t) = −[
k1x(t)

C1
+ k2] and b(t) = −k4 + k1[

x(t)

C1
− 1]

then the system (3.10)-(3.11) can be written as

dx

dt
= a(t)x + k1z,

dz

dt
= b(t)z.

It follows that

z(t) = z0e
R

t

0
b(s)ds, x(t) = e

R

t

0
a(s)ds[x0 + k1

∫ t

0

e−
R

s

0
a(τ)dτz(s)ds].

The expressions immediately yield that z(t) > 0 and x(t) > 0 for t > 0 on the interval
of existence if z0 > 0 and x0 ≥ 0. Moreover, letting k = min{k1, k4} one has

d(x + z)

dt
= −k2x − k4z ≤ −k(x + z).

Hence
0 ≤ x(t) + z(t) ≤ (x0 + y0)e

−kt

for t > 0 and on the interval of existence, thus x(t) and z(t) are bounded and the
interval of existence is [0,∞), further, both x(t) and z(t) converge to 0 exponentially
as t → ∞. It is easy to see that z0 = 0 implies that z(t) = 0 for all t ≥ 0. The Lemma
is proved.

Proof of Theorem 3.3. We now consider the complete system (3.1)-(3.4). Note
that x(t) + y(t) + z(t) + u(t) = c.

Part (ii) is easy to check.
For the proof of parts (i), (iii) and (iv), using the facts that (3.1) and (3.3) are

unrelated to y and u, and that x(t) ≥ 0, z(t) ≥ 0 for all t ≥ 0 and x(t) → 0 and
z(t) → 0 by Lemma 3.2, we only need to show the non-negativity and boundedness
of y(t) and u(t), then discuss the asymptotic behavior of y(t) and u(t).

We consider the following three cases.

Case 1: x0 = 0 and z0 = 0. Then x(t) = 0 and z(t) = 0 for all t ≥ 0, and the
original system is reduced to a system with two equations as in the CO-saturated case
discussed in Theorem 3.2. So y(t) and u(t) are nonnegative and bounded, y(t) ≥ 0
and u(t) ≥ 0, y(t) → c and u(t) → 0 if c ≤ C2; y(t) → C2 and u(t) → c−C2 if c > C2.
Parts (i), (iii) and (iv) are therefore true in this case.

Case 2: x0 ≥ 0 and z0 > 0. Then by Lemma 3.2, x(t) > 0 for all t > 0 and
z(t) > 0 for all t ≥ 0. We claim that u(t) > 0 for all t > 0. If not, suppose there is
a t1 ≥ 0 such that u(t1) = 0. However, using (3.4) we have du

dt
(t1) = k4z(t1) > 0, so

u(t) > 0 for all t > 0 and t in the interval of existence of u(t) by Lemma 3.1. We also
claim that y(t) > 0 for all t ≥ 0. If not, then there is a t2 ≥ 0 such that y(t2) = 0. If
t2 > 0, then dy

dt
(t2) = k3u(t2)+k2x(t2) > 0 by (3.2), and again by Lemma 1, we must
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have y(t) > 0 for all t > 0 and t in the interval of existence of y(t). If t2 = 0 (that
is, y0 = 0), then as long as u0 6= 0 or x0 6= 0, we still have dy

dt
(0) = k3u0 + k2x0 > 0,

therefore y(t) > 0 for all t > 0 and and t in the interval of existence by Lemma 3.1.
If y0 = 0 with both x0 = 0 and u0 = 0, then dy

dt
(0) = 0 and we cannot use Lemma

3.1. However, as z0 > 0 and

d2y

dt2
(0) = k3

du

dt
(0) + k2

dx

dt
(0) = k3k4z0 + k2k1z0 > 0

(by differentiating (3.2) and using x0 = y0 = u0 = 0), then d2y
dt2

(t) > 0 on [0, τ1) with
some τ1 > 0. Using the Taylor expansion of y(t) at 0, y(t) = 1

2y′′(s)t2 > 0, where
0 < s < t, for all t ∈ (0, τ1); then from the above discussion, we have y(t) > 0 for all
t > 0 and t in the interval of existence. Part (i) is therefore true in this case.

Case 3: x0 > 0 and z0 = 0. Then z(t) = 0 for all t ≥ 0 and x(t) = x0e
−(

k1

C1
+k2)t

→
0+ monotonically. We claim that if y0 ≥ 0 and u0 > 0, then y(t) > 0 and u(t) > 0 for
all t > 0; and if y0 ≥ 0 and u0 = 0, then y(t) > 0 and u(t) = 0 for all t > 0. In fact,

as z(t) = 0, then du
dt

= −k3(1 − y
C2

)u by (3.4) and so u(t) = u0e
−

R

t

0
k3(1− y

C2
)dτ ≥ 0

as long as y(t) and u(t) exist. We show that y(t) > 0 on its interval of existence. In
fact, if there is a t1 ≥ 0 with y(t1) = 0, then dy

dt
(t1) = k3u(t1)+ Kcx(t1) > 0 by (3.2),

so that y(t) > 0 by Lemma 3.1. Part (i) is thus also true in this case.

We have shown in Case 2 and Case 3 that all x(t), y(t), z(t) and u(t) are nonneg-
ative. As the sum x(t) + y(t) + z(t) + u(t) = c is a positive constant, y(t) and u(t)
are nonnegative and bounded, and thus they exist on [0,∞).

Next, We discuss the asymptotic behavior of y(t) and u(t). Using boundedness
and the Bolzano-Weierstrass theorem, there is a subsequence tk → ∞ with y(tk) →
y1, u(tk) → u1 and y1 + u1 = c since x(t) → 0, z(t) → 0 as t → ∞. By the
theory of dynamical systems (see [9]), for any nontrivial and nonnegative initial data
(x0, y0, z0, u0), the ω−limit set ω(x0, y0, z0, u0) is nonempty, compact, invariant, and
attracts. Moreover,

ω(x0, y0, z0, u0) ⊂ L = {(0, y, 0, u)|y ≥ 0, u ≥ 0, y + u = c}

and
ω(x0, y0, z0, u0) ⊂ ω(L).

But the discussion of the CO-saturated case (Theorem 3.2) shows that for any initial
point on L, we have ω(L) = (0, C2, 0, c−C2) if c > C2, or ω(L) = (0, c, 0, 0) if c ≤ C2.
Therefore, ω(x0, y0, z0, u0) = ω(L) is a singleton. Part (iii) and (iv) are therefore
proved.

3.3. Biological Significance of Main Results

Theorems 3.1-3.3 may be interpreted as having the following biological significance.
Theorem 3.1: In the CO-free case, there is no carbonated Hbs, and so Cco

p (t) = 0
and Cco

m (t) = 0.
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(i) If there are no initial de-oxy polymers (Cd
p (0) = 0), then all de-oxy monomers

stay as they are (Cd
m(t) =constant); this is consistent with expectation as there

are no polymers to melt.

(ii) If there are some initial de-oxy polymers (Cd
p (0) > 0), and if the total HbS

population is no more than the solubility concentration of phosphate (c ≤ Cs),
then all de-oxy polymers will melt into de-oxy monomers (Cd

p (t) → 0 and

Cd
m(t) → c).

(iii) If there are some initial de-oxy polymers (Cd
p (0) > 0), and if the total HbS

population is more than the solubility concentration of phosphate (c > Cs)
, then either the de-oxy polymers melt into de-oxy monomers when the ini-
tial monomer population is less than the solubility concentration of phosphate
(Cd

m(0) < Cs) until the solubility concentration of phosphate is reached (Cd
m(t)

increases to Cs and Cd
p (t) reduces to c−Cs); or there is de-oxy polymerization

from de-oxy monomers when the initial monomer population is more than the
solubility concentration of phosphate (Cd

m(0) > Cs) until the solubility concen-
tration of phosphate is reached (Cd

m(t) reduces to Cs and Cd
p (t) increases to

c − Cs).

Theorem 3.2: In the CO-saturated case (Theorem 3.2), there is no de-oxy Hbs,
and so Cd

p (t) = 0 and Cd
m(t) = 0.

(i) If there are no initial CO-bound polymerized HbS (Cco
p (0) = 0), there is

no polymer melting, and all CO-bound solution phase HbS stay as they are
(Cco

m (t) =constant);

(ii) If there are some initial CO-bound polymerized HbS (Cco
p (0) > 0), and if the

total HbS population is no more than the CO-solubility concentration (c ≤
Cco

s ), then all CO-bound polymers will melt into CO-bound solution phase
HbS (Cco

p (t) → 0 and Cco
m (t) → c);

(iii) If there are some initial CO-bound polymerized HbS (Cco
p (0) > 0), and if the

total HbS population is more than the CO-solubility concentration (c > Cco
s ),

then either the CO-bound polymerized HbS melt into CO-bound solution phase
HbS when the initial CO-bound solution phase HbS population is less than the
carbon solubility concentration (Cco

m (0) < Cco
s ) until the CO-solubility concen-

tration is reached (Cco
m (t) increases to Cco

s and Cco
p (t) reduces to c − Cco

s ); or
there is CO-bound polymerization from CO-bound solution phase HbS when
the initial CO-bound solution phase HbS population is more than the CO-
solubility concentration (Cco

m (0) > Cco
s ) until the CO-solubility concentration

is reached (Cco
m (t) reduces to Cco

s and Cco
p (t) increases to c − Cco

s );

Theorem 3.3: In the general case, with both de-oxy and carbonation effects are
present.

(i) The non-negativity shows the model is consistent with the expectation that the
population of each group remains non-negative, and the total HbS population
remains unchanged.
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(ii) As there is CO ([CO] > 0) and CO-bound activity (km > 0 and kd > 0), there
are eventually no de-oxy HbS (Cd

m(t) → 0 and Cd
p (t) → 0)), that is, the HbS

are either in CO-bound solution phase or in CO-bound polymerized phase.

(iii) If the total HbS population is no more than the CO-solubility concentration
(c ≤ Cco

s ), then eventually all HbS are in CO-bound solution phase (Cco
p (t) → 0

and Cco
m (t) → c).

(iv) If the total HbS population is more than the CO-solubility concentration (c >

Cco
s ), then there are eventually only CO-bound solution phase HbS (Cco

m (t) →
Cco

s ) and CO-bound polymerized HbS (Cco
p (t) → c − Cco

s ).

4. Numerical Experiments

4.1. The Experiments

In this section, we report numerical experiments which assess the effects of varying
the levels of CO in the solution on the transient dynamics. The following parameter
and initial values from [2] are used:

km = 0.070 ± 0.002 (s-1mM-1) Binding rate of CO to solution phase HbS

kd = 0.028 ± 0.0008 (1/s) Melting rate for de-oxy HbS monomers

kp = 0.010 (s-1mM-1) Binding rate of CO to de-oxy HbS polymers

kCO = 0.100 (1/s) Melting rate of CO-bound HbS polymers

C1.53
s = 0.4000 (mM) Solubility concentration of phosphate buffer (dil)

CCO
s = 0.1000 (mM) Solubility concentration of CO

and

Cd
m(0) = 0.0036 (mM) Molar concentration of de-oxy HbS monomers

CCO
m (0)= 0.0000 (mM) Molar concentration of CO-bound HbS monomers

Cd
p (0) = 0.1750 (mM) Molar concentration of de-oxy HbS polymers

CCO
p (0)= 0.0000 (mM) Molar concentration of CO-bound HbS polymers

To observe the CO-effects, we kept all parameters and initial values constant and
varied the molar concentration of CO [CO], from 0.05 to 909.1. We used C + + to
generate the numerical solutions and to plot the data to visualize the results. We
have the following observations for the four HbS components.
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The analysis in Section 3 (Theorem 3.3) shows that for [CO] > 0, Cd
m(t) always

goes to 0 as t increases; the decrease, however, this change is not always monotone,
as we will now show. From equation (2.9), let

A = −kd(
Cd

m(0)

Cs

− 1)Cd
p (0), B = km[CO]Cd

m(0), and M =
dCd

m(0)

dt
,

so that the slope of Cd
m(0) is given by M = A - B[CO]. Notice that B > 0 since

all of our parameters are positive. If Cd
m(0) < Cs then A > 0, and when CO =

0, M = A > 0. As [CO] increases the slope decreases until it becomes 0 and then
negative. The value of [CO] for which the initial slope M = 0 is [CO] = A

B
. For the

initial conditions used here, A
B

= 19.269. Figure 2 shows the effects of varying [CO]
on Cd

m(t).

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  2  4  6  8  10

Cd
m

t seconds

CO = 0.0
CO = 5.0

CO = 10.0

CO = 19.269

CO = 30.0

CO = 100.0

CO = 909.0909

Figure 2: The effect of CO levels on Cd
m. Note the transition in qualitative

behavior at [CO] = 19.629.

Equation (2.10) gives the rate of change for Cd
p . When Cd

m < Cs, the second term,

kd(
Cd

m(t)
Cs

−1)Cd
p (t), is negative, with the first term, −kp[CO]Cd

p (t), also negative since

all parameters are positive, making the derivative
dCd

p(t)

dt
negative. As CO increases,

the magnitude of the first term increases, making the derivative more negative. As
it can be seen from Figure 3, this simply causes Cd

p to decrease more rapidly to 0,
without altering the qualitative behavior.
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Figure 3: Effect of CO levels on Cd
p .

Like Cd
m, the component Cco

m is not monotonic for small values of CO. The
numerically determined transition value for Cd

m(t) with given parameters and initial
conditions to change behavior appears to be approximately at [CO] = 8.6, as seen
in Fig 4. That is, for [CO] < 8.6, Cco

m increases to a value above the equilibrium,
then decreases to the equilibrium; for [CO] > 8.6, Cco

m increases monotonically to the
equilibrium.

The component Cco
p displays some very interesting behavior as levels of CO vary.

For large enough levels, with the stated initial conditions and parameter values, CCO
p

increases rapidly for a very short time and then decreases toward the equilibrium
value, as seen in Fig 5. For very small [CO] values Cco

p increases, decreases, then
increases toward the equilibrium value. This behavior is shown in Fig 6.

4.2. Discussion of Numerical Experiments

Our numerical experiments reveal case (iv) in Theorem 3. The numerical results show
that for large CO there is an initial rapid increase in CCO

p followed by a decrease of Cco
p

to the equilibrium Cd
m(0) + Cco

m (0) + Cd
p (0) + Cco

p (0) − Cco
s = 0.0786. This suggests

a fast CO attachment to Cd
p (Cd

p transits to Cco
p ) which is then followed by CO-

aided melting, since the initial rapid increase in Cco
p (Fig 5) corresponds to an initial

rapid decrease in Cd
p (Fig 3); and the following gentle decrease of Cco

p to equilibrium

corresponds to a gentle increase of CCO
m (Fig 4) to equilibrium Cco

s = 0.1, the slow
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Figure 4: Effect of CO levels on CCO
m , note the transition at CO = 8.6.
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Figure 5: Effect of CO levels on CCO
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Figure 6: Effect of very small CO levels on CCO
p .

decrease suggesting a relatively gentle melt of CCO
p .

For CO ≤ 19.269, the initial increase in Cd
m is followed by a gentle decrease to

equilibrium 0. This suggests that Cd
m increases due to non CO-aided melting of Cd

p

in this regime, followed by the gentle loss of Cd
m due to CO attachment. In this

regime, the initial increase in Cd
m and following decrease correspond to an initial

decrease in Cd
p followed by an increase in CCO

m , which suggests a melting of de-oxy
polymers followed by CO-attachment to de-oxy monomers (HbS in solution phase) at
low CO-concentrations.

We use the following diagram to illustrate the implications of our experiments.
The numerical experiments suggest that the path 1-2 is dominant for low CO, while
the path 3-4 is dominant for high CO.

�� ��

�� ��
Cd

p
3 +3

1

��

�� ��

�� ��
Cco

p

4

��
�� ��

�� ��
Cd

m 2
+3�� ��

�� ��
Cco

m

Moreover, for low CO, CCO
m experiences a steep initial growth on a scale corresponding

to an initial steep decay in Cd
m, suggesting fast initial attachment of CO to Cd

m.
However, the simulation suggests that this CO attachment is unstable - CO-attached
CCO

m reverts back to de-oxy Cd
m or returns to CCO

p . However, since d
dt

Cco
p (0) < 0 for
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low CO, it must be that CCO
m turns into Cd

m, suggesting weak CO-attachment to Cd
m

at low CO concentration.

5. Conclusion

A mathematical model for the dynamic behavior of a mixed population of free and
polymerized HbS molecules in a CO-saturated buffer solution has been described and
qualitatively analyzed. Numerical experiments were performed to study the effects
of CO on melting dynamics of the polymers. The model further predicts that, at
high enough CO-solubility concentrations, CO binds to all HbS, both solution phase
HbS and and polymerized HbS, and all are CO-ligated before 0.5 seconds for the
parameters and initial values used in [2]. However, while the de-oxy polymerized HbS
population does disappear from the solution, the CO-ligated polymerized population
exceeds the CO-ligated free population until almost 8 seconds, and complete melting
does not occur until about 41 seconds. Based on the parameter values used in our
simulations, our experiments confirm the conclusion reached in [2] that carbon binding
during sickle cell polymer melting is possible, and does increase the melting rate of
the polymers, resulting in a very short time interval during which melting occurs.
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