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Abstract. The authors consider the existence of positive solutions for a class of
fourth-order nonlinear singular m-point boundary value problem with p-Laplacian by
using fixed point theory in cones, and derive an explicit interval for λ such that for any
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problem is guaranteed. The results significantly extend and improve many known
results even for non-singular cases.
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1. Introduction

Recently, there have been many papers working on the existence of positive solutions
to multi-point boundary-value problems for ordinary differential equations, see, for
example, [1,3,8-16]. This has been mainly due to its arising in different areas of ap-
plied mathematics and physics. For example, the vibrations of a guy wire of uniform
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cross-section and composed of N parts of different densities can be set up as a multi-
point boundary-value problem, many problems in the theory of elastic stability can
be handled as multi-point boundary-value problems too. The singular ordinary dif-
ferential equations arise in the fields of gas dynamics, Newtonian fluid mechanics, the
theory of boundary layer and so on, the theory of singular boundary value problems
has become an important area of investigation in recent years. To identify a few, we
refer the reader to [3,4,16,18] and references therein.

Motivated by works mentioned above, in this paper, we study the existence of
positive solutions for fourth-order singular m-point boundary value problem (BVP)
with p-Laplacian
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(φp(x
′′))′′ − λg(t)f(t, x) = 0, 0 < t < 1,

x′′(0) = x′′(1) = 0,

ax(0) − bx′(0) =

m−2
∑

i=1

aix(ξi),

cx(1) + dx′(1) =

m−2
∑

i=1

bix(ξi),

(1.1)

where λ > 0 is a parameter, φp(s) is p-Laplacian operator, i.e., φp(s) = |s|p−2s, p >

1, (φp)
−1 = φq,

1
p
+ 1
q

= 1, a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, ρ := ac+bc+ad > 0, ξi ∈ (0, 1),

ai, bi ∈ (0,+∞) (i = 1, 2, . . . ,m− 2), g ∈ C((0, 1), [0,+∞)) and 0 <
∫ 1

0 g(t)dt < +∞,
f ∈ C([0, 1] × [0,+∞), [0,+∞)).

However, to the best of our knowledge, there are very few literatures considering
the existence of positive solutions for fourth-order singular m-point boundary value
problem, see, for example, [4-7]. But the boundary conditions are two-point in [4-
7]. So it is interesting and important to discuss the existence of positive solutions
for problem (1.1). Many difficulties occur when we deal with them. For example,
the construction of cone and operator. So we need to introduce some new tools and
methods to investigate the existence of positive solutions for problem (1.1). On the
other hand, g(t) may be singular at t = 0 and/or t = 1. Moreover, the methods used
in this paper are different from [4,5] and the results obtained in this paper generalize
some results in [4-7] to some degree.

The paper is organized in the following fashion. In Section 2, we provide some
necessary background. In particular, we state some properties of the Green’s function
associated with BVP (2.2), BVP (2.7) and some lemmas that are important to our
main results. In Section 3, the main result will be stated and proved.

2. Preliminaries

Let J = [0, 1]. The basic space used in this paper is E = C[0, 1]. It is well known
that E is a real Banach space with the norm ‖ · ‖ defined by ‖x‖ = max

t∈J
|x(t)|.

The following assumptions will stand throughout this paper:
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(H1) g ∈ C((0, 1), [0,+∞)) and 0 <
∫ 1

0 g(t)dt < +∞;

(H2) f ∈ C([0, 1] × [0,+∞), [0,+∞));

(H3) ∆ < 0, ρ−
∑m−2

i=1 aiφ(ξi) > 0, ρ−
∑m−2
i=1 biψ(ξi) > 0, where

∆ =

∣
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∣

−

m−2
∑

i=1

aiψ(ξi) ρ−

m−2
∑

i=1

aiφ(ξi)

ρ−

m−2
∑

i=1

biψ(ξi) −

m−2
∑

i=1

biφ(ξi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

and
ψ(t) = b+ at, φ(t) = c+ d− ct, t ∈ J (2.1)

are linearly independent solutions of the equation x′′ = 0.

We remark that (2.1) shows that ψ is nondecreasing on J and φ is nonincreasing
on J .

In our main results, we will make use of the following lemmas.

Lemma 2.1. If (H1) and (H2) hold, then BVP

{

−y′′(t) = −λg(t)f(t, x(t)), t ∈ (0, 1),
y(0) = y(1) = 0,

(2.2)

has a unique solution

y(t) = −λ

∫ 1

0

h(t, s)g(s)f(s, x(s))ds, (2.3)

where

h(t, s) =

{

t(1 − s), 0 ≤ t ≤ s ≤ 1,
s(1 − t), 0 ≤ s ≤ t ≤ 1.

(2.4)

By calculation, it is easy to prove that (2.3) holds.
It is clear that h(t, s) has the following properties.

Proposition 2.1. For t, s ∈ J , we have

0 ≤ h(t, s) ≤ h(s, s) ≤
1

4
. (2.5)

Proposition 2.2. Let θ ∈ (0, 1
2 ) and define Jθ = [θ, 1 − θ]. Then for all t ∈ Jθ,

s ∈ [0, 1] we have
h(t, s) ≥ θh(s, s). (2.6)
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Proof. Let t ∈ Jθ, s ∈ [0, 1]. We distinguish two cases:
Case 1: θ ≤ t ≤ s ≤ 1

In this case, we have

h(t, s) = t(1 − s) =
t

s
h(s, s) ≥ th(s, s) ≥ θh(s, s).

Case 2: 0 ≤ s ≤ t ≤ 1 − θ

In this case, we have

h(t, s) = s(1 − t) =
1 − t

1 − s
h(s, s) ≥ (1 − t)h(s, s) ≥ θh(s, s).

Therefore, (2.6) holds. �

Lemma 2.2. If (H3) holds, then, for y ∈ C[0, 1], BVP


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−x′′ = −φq(y(t)), 0 < t < 1,

ax(0) − bx′(0) =

m−2
∑

i=1

aix(ξi),

cx(1) + dx′(1) =
m−2
∑

i=1

bix(ξi),

(2.7)

has a unique solution

x(t) = −

[
∫ 1

0

G(t, s)φq(y(s))ds+A(φq(y))ψ(t) +B(φq(y))φ(t)

]

, (2.8)

where

G(t, s) = 1
ρ

{

ψ(s)φ(t), if 0 ≤ s ≤ t ≤ 1,
ψ(t)φ(s), if 0 ≤ t ≤ s ≤ 1,

(2.9)

A(φq(y)) :=
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m−2
∑

i=1

ai

∫ 1

0

G(ξi, t)φq(y(t))dt ρ−

m−2
∑

i=1

aiφ(ξi)

m−2
∑

i=1

bi

∫ 1

0

G(ξi, t)φq(y(t))dt −

m−2
∑

i=1

biφ(ξi)

∣

∣

∣

∣

∣
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∣

∣
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, (2.10)

B(φq(y)) :=
1

∆

∣

∣

∣
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∣

∣

∣

∣

∣

∣

−

m−2
∑

i=1

aiψ(ξi)

m−2
∑

i=1

ai

∫ 1

0

G(ξi, t)φq(y(t))dt

ρ−
m−2
∑

i=1

biψ(ξi)
m−2
∑

i=1

bi

∫ 1

0

G(ξi, t)φq(y(t))dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.11)
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The proof is similar to that of Lemma 5.5.1 in [9].
Let

∇ := min{min
t∈Jθ

φ(t),min
t∈Jθ

ψ(t), 1}, Λ := max{1, ‖ψ‖, ‖φ‖}.

It is not difficult to show that G(t, s) have the following properties.

Proposition 2.3. For t, s ∈ J , we have

0 ≤ G(t, s) ≤ G(s, s) ≤
Λ2

ρ
. (2.12)

Proposition 2.4. For t ∈ Jθ, s ∈ [0, 1] we have

G(t, s) ≥ σG(s, s), (2.13)

where
σ = σθ = min

{

ψ(θ)
ψ(1) ,

φ(1−θ)
φ(0)

}

. (2.14)

Proof. Let t ∈ Jθ, s ∈ [0, 1]. We distinguish two cases:
Case 1: θ ≤ t ≤ s ≤ 1

In this case, we have

G(t, s) =
1

ρ
ψ(t)φ(s) =

ψ(t)

ψ(s)
G(s, s) ≥

ψ(θ)

ψ(1)
G(s, s).

Case 2: 0 ≤ s ≤ t ≤ 1 − θ

In this case, we have

G(t, s) =
1

ρ
φ(t)ψ(s) =

φ(t)

φ(s)
G(s, s) ≥

φ(1 − θ)

φ(0)
G(s, s).

Therefore, (2.13) holds. �

Suppose that x(t) is a solution of (1.1). Then from Lemma 2.1 and Lemma 2.2,
we have

x(t) = λq−1

[
∫ 1

0

G(t, s)φq(Υ)ds+A(φq(Υ))ψ(t) +B(φq(Υ))φ(t)

]

, (2.15)

where Υ =
∫ 1

0 h(s, τ)g(τ)f(τ, x(τ))dτ .
Similar to the proof of that Lemma 5.5.2 and Lemma 5.5.3 in [10] we can prove

that the following Lemma holds.

Lemma 2.3. Suppose that (H1) − (H3) hold. Then the solution x of (1.1) satisfies
x(t) ≥ 0 for t ∈ J and min

t∈Jθ

x(t) ≥ σ̄‖x‖, where σ̄ = min{σ, ∇Λ }.
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Let
K = {x ∈ E : x ≥ 0,min

t∈Jθ

x(t) ≥ σ̄‖x‖}.

It is clear that K is a cone of E.
Define an operator T : K → K by

(Tx)(t) = λq−1

[
∫ 1

0

G(t, s)φq(Υ)ds+A(φq(Υ))ψ(t) +B(φq(Υ))φ(t)

]

. (2.16)

Lemma 2.4. Suppose that (H1) − (H3) hold. Then TK ⊂ K and T : K → K is
completely continuous.

Proof. For any x ∈ K, by (2.16), we obtain Tλx ≥ 0 and

(Tx)(t) = λq−1[
∫ 1

0
G(t, s)φq(Υ)ds+A(φq(Υ))ψ(t) +B(φq(Υ))φ(t)]

≤ λq−1

[

∫ 1

0
G(s, s)φq(Υ)ds+ Λ[A(φq(Υ)) +B(φq(Υ))]

]

, for t ∈ J.

On the other hand, we have for t ∈ Jθ

(Tx)(t) = λq−1[
∫ 1

0
G(t, s)φq(Υ)ds+A(φq(Υ))ψ(t) +B(φq(Υ))φ(t)]

≥ λq−1

[

σ
∫ 1

0 G(s, s)φq(Υ)ds+ ∇

Λ Λ[A(φq(Υ)) +B(φq(Υ))]

]

≥ σ̄λq−1

[

∫ 1

0
G(s, s)φq(Υ)ds+ Λ[A(φq(Υ)) +B(φq(Υ))]

]

≥ σ̄‖Tx‖.

Therefore, TK ⊂ K.
Next by standard methods and Ascoli-Arzela theorem one can prove T : K → K

is completely continuous. So it is omitted. �

Lemma 2.5. ([17] Fixed point theorem of cone expansion and compression
of norm type) Let Ω1 and Ω2 be two bounded open sets in Banach space E, such that
θ ∈ Ω1 and Ω̄1 ⊂ Ω2. Let operator A : P ∩ (Ω̄2\Ω1) → P be completely continuous,
where θ denotes the zero element of E and P is a cone in E. Suppose that one of the
two conditions

(i) ||Ax|| ≤ ||x||, ∀x ∈ P ∩ ∂Ω1 and ||Ax|| ≥ ||x||, ∀x ∈ P ∩ ∂Ω2,

or
(ii) ||Ax|| ≥ ||x||, ∀x ∈ P ∩ ∂Ω1, and ||Ax|| ≤ ||x||, ∀x ∈ P ∩ ∂Ω2,

is satisfied. Then A has at least one fixed point in P ∩ (Ω̄2\Ω1).
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3. Main results

We are now ready to apply the Guo-Krasnoselskii fixed point theorem to the operator
T to give sufficient conditions for the existence of positive solution to BVP (1.1).

Let

min f∞ := lim inf
x→∞

min
t∈[0,1]

f(t, x)

φp(x)
, max f0 := lim sup

x→0+

max
t∈[0,1]

f(t, x)

φp(x)
,

min f0 := lim inf
x→0+

min
t∈[0,1]

f(t, x)

φp(x)
, max f∞ := lim sup

x→∞

max
t∈[0,1]

f(t, x)

φp(x)
.

Theorem 3.1. Assume that (H1)−(H3) hold, and min f∞ > 0, max f0 <∞. Then
BVP (1.1) has at least one positive solution in P provided

1

σ̄p−1 min f∞ · Lp−1
1

< λ <
1

max f0 ·M
p−1
1

, (3.1)

where

M1 =

(

1

4

)q−1 [

Λ2

ρ
φq

(
∫ 1

0

g(τ)dτ

)

+ Λ[Ã+ B̃]

]

,

L1 = (θ)2(q−1)(1 − θ)q−1

[

1

ρ
σψ(θ)φ(1 − θ)φq

(
∫ 1−θ

θ

g(τ)dτ

)

+ ∇[Â+ B̂]

]

,

where Ã, B̃ are defined by (3.4) and (3.5), Â, B̂ are defined by (3.8) and (3.9), re-
spectively.

Proof. Let T be cone preserving, completely continuous operator that was defined
by (2.16).

By (3.1), there exists ε > 0 such that

1

σ̄p−1(min f∞ − ε) · Lp−1
1

≤ λ ≤
1

(max f0 + ε) ·Mp−1
1

. (3.2)

Considering max f0 <∞, there exists r1 > 0 such that

f(t, x) ≤ (max f0 + ε)φp(x) for 0 < x ≤ r1, t ∈ [0, 1]. (3.3)

So, for x ∈ ∂Pr1 , we have from (3.3)

|A(φq(Υ))| ≤
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m−2
∑

i=1

ai

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt ρ−

m−2
∑

i=1

aiφ(ξi)

m−2
∑

i=1

bi

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt −

m−2
∑

i=1

biφ(ξi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×

(

1

4

)q−1

(max f0 + ε)q−1‖x‖

:= Ã

(

1

4

)q−1

(max f0 + ε)q−1‖x‖, (3.4)
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and

|B(φq(Υ))| ≤
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
m−2
∑

i=1

aiψ(ξi)
m−2
∑

i=1

ai

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt

ρ−

m−2
∑

i=1

biψ(ξi)

m−2
∑

i=1

bi

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×

(

1

4

)q−1

(max f0 + ε)q−1‖x‖

:= B̃

(

1

4

)q−1

(max f0 + ε)q−1‖x‖. (3.5)

Therefore, by (3.3) − (3.5), for x ∈ ∂Pr1 we have

‖Tx‖ = λq−1 max
t∈J

∣

∣

∣

∣

∫ 1

0
G(t, s)φq(Υ)ds+A(φq(Υ))ψ(t) +B(φq(Υ))φ(t)

∣

∣

∣

∣

≤ (λ1
4 )q−1(max f0 + ε)q−1‖x‖

[

Λ2

ρ
φq(

∫ 1

0
g(τ)dτ) + max

t∈J
[Ãψ(t) + B̃φ(t)]

]

≤ (λ1
4 )q−1(max f0 + ε)q−1‖x‖

(

Λ2

ρ
φq(

∫ 1

0 g(τ)dτ) + Λ[Ã+ B̃]

)

= ‖x‖.
(3.6)

Next, turning to min f∞ > 0, there exists r̄2 > 0 such that

f(t, x) ≥ (min f∞ − ε)φp(x) for x ≥ r̄2, t ∈ [0, 1]. (3.7)

Choose r2 = max{ r̄2
σ̄
, r1 + 1}, then r2 > r1. If x ∈ ∂Pr2 , then

min
t∈Jθ

x(t) ≥ σ̄‖x‖ = σ̄r2 ≥ r̄2,

and we obtain by (3.7)

|A(φq(Υ))| ≥
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m−2
∑

i=1

ai

∫ 1−θ

θ

G(ξi, t)φq

(
∫ 1−θ

θ

g(τ)dτ

)

dt ρ−

m−2
∑

i=1

aiφ(ξi)

m−2
∑

i=1

bi

∫ 1−θ

θ

G(ξi, t)φq

(
∫ 1−θ

θ

g(τ)dτ

)

dt −

m−2
∑

i=1

biφ(ξi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×(θ)2(q−1)(1 − θ)q−1(min f∞ − ε)q−1σ̄‖x‖

:= Â(θ)2(q−1)(1 − θ)q−1(min f∞ − ε)q−1σ̄‖x‖, (3.8)
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and

|B(φq(Υ))| ≥
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−

m−2
∑

i=1

aiψ(ξi)

m−2
∑

i=1

ai

∫ 1−θ

θ

G(ξi, t)φq

(
∫ 1−θ

θ

g(τ)dτ

)

dt

ρ−

m−2
∑

i=1

biψ(ξi)

m−2
∑

i=1

bi

∫ 1−θ

θ

G(ξi, t)φq

(
∫ 1−θ

θ

g(τ)dτ

)

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×(θ)2(q−1)(1 − θ)q−1(min f∞ − ε)q−1σ̄‖x‖

:= B̂(θ)2(q−1)(1 − θ)q−1(min f∞ − ε)q−1σ̄‖x‖. (3.9)

Therefore, by (2.16) and (3.7) − (3.9), for x ∈ ∂Pr2 we have

‖Tx‖ = λq−1 max
t∈J

[
∫ 1

0 G(t, s)φq(Υ)ds+A(φq(Υ))ψ(t) +B(φq(Υ))φ(t)]

≥ (min f∞ − ε)q−1λq−1(θ)2(q−1)(1 − θ)q−1σ̄‖x‖

×

[

1
ρ
σψ(θ)φ(1 − θ)φq(

∫ 1−θ

θ
g(τ)dτ) + ∇[Â+ B̂]

]

= ‖x‖.

(3.10)

Applying (i) of Lemma 2.5 to (3.6) and (3.10) yields that T has a fixed point
x∗ ∈ P̄r1,r2 = {x : x ∈ P, r1 ≤ ‖x‖ ≤ r2}, r1 ≤ ‖x∗‖ ≤ r2 and x∗(t) ≥ σ̄‖x∗‖ >
0, t ∈ [0, 1]. Thus it follows that BVP (1.1) has a positive solution x∗. The proof is
complete. �

Theorem 3.2. Assume that (H1)−(H3) hold, and min f0 > 0, max f∞ <∞. Then
BVP (1.1) has at least one positive solution in P provided

1

σ̄p−1 min f0 · L
p−1
1

< λ <
1

max f∞ ·Mp−1
1

. (3.11)

Proof. Let T be cone preserving, completely continuous operator that was defined
by (2.16).

By (3.11), there exists ε > 0 such that

1

σ̄p−1(min f0 − ε) · Lp−1
1

≤ λ ≤
1

(max f∞ + ε) ·Mp−1
1

. (3.12)

Considering min f0 > 0, there exists r3 > 0 such that

f(t, x) ≥ (min f0 − ε)φp(x) for 0 ≤ x ≤ r3, t ∈ [0, 1]. (3.13)

Then for x ∈ ∂Pr3 we have by (3.13)

|A(φq(Υ))| ≥
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m−2
∑

i=1

ai

∫ 1−θ

θ

G(ξi, t)φq

(
∫ 1−θ

θ

g(τ)dτ

)

dt ρ−

m−2
∑

i=1

aiφ(ξi)

m−2
∑

i=1

bi

∫ 1−θ

θ

G(ξi, t)φq

(
∫ 1−θ

θ

g(τ)dτ

)

dt −

m−2
∑

i=1

biφ(ξi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×(θ)2(q−1)(1 − θ)q−1(min f0 − ε)q−1σ̄‖x‖

:= Â(θ)2(q−1)(1 − θ)q−1(min f0 − ε)q−1σ̄‖x‖, (3.14)
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and

|B(φq(Υ))| ≥
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
m−2
∑

i=1

aiψ(ξi)
m−2
∑

i=1

ai

∫ 1−θ

θ

G(ξi, t)φq

(
∫ 1−θ

θ

g(τ)dτ

)

dt

ρ−

m−2
∑

i=1

biψ(ξi)

m−2
∑

i=1

bi

∫ 1−θ

θ

G(ξi, t)φq

(
∫ 1−θ

θ

g(τ)dτ

)

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×(θ)2(q−1)(1 − θ)q−1(min f0 − ε)q−1σ̄‖x‖

:= B̂(θ)2(q−1)(1 − θ)q−1(min f0 − ε)q−1σ̄‖x‖. (3.15)

Therefore, by (2.16) and (3.13)− (3.15), for x ∈ ∂Pr2 we have

‖Tx‖ = λq−1 max
t∈J

∣

∣

∣

∣

∫ 1

0
G(t, s)φq(Υ)ds+A(φq(Υ))ψ(t) +B(φq(Υ))φ(t)

∣

∣

∣

∣

≥ (min f0 − ε)q−1λq−1(θ)2(q−1)(1 − θ)q−1σ̄‖x‖

×

[

1
ρ
σψ(θ)φ(1 − θ)φq(

∫ 1−θ

θ
g(τ)dτ) + ∇[Â+ B̂]

]

= ‖x‖.

(3.16)

Next, turning to max f∞ <∞, there exists r̄4 > 0 such that f(t, x) ≤ (max f∞ +
ε)φp(x) for x ≥ r̄4, t ∈ [0, 1].

Case 1) Suppose that f is bounded. Then there exists R > 0 such that f(t, x) ≤
φp(R) for t ∈ [0, 1], x ∈ [0,∞). Choose

r4 = max

{

2r3, (λ
1

4
)q−1R

(

Λ2

ρ
φq

(
∫ 1

0

g(τ)dτ

)

+ Λ[Ã+ B̃]

)}

.

Then for x ∈ ∂Pr4 we have

|A(φq(Υ))| ≤
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m−2
∑

i=1

ai

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt ρ−
m−2
∑

i=1

aiφ(ξi)

m−2
∑

i=1

bi

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt −

m−2
∑

i=1

biφ(ξi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×

(

1

4

)q−1

R

:= Ã

(

1

4

)q−1

R, (3.17)
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and

|B(φq(Υ))| ≤
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
m−2
∑

i=1

aiψ(ξi)
m−2
∑

i=1

ai

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt

ρ−

m−2
∑

i=1

biψ(ξi)

m−2
∑

i=1

bi

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×

(

1

4

)q−1

R

:= B̃

(

1

4

)q−1

R. (3.18)

Therefore, by (3.17) and (3.18), for x ∈ ∂Pr4 we have

‖Tx‖ = max
t∈J

[

∫ 1

0
G(t, s)φq(Υ)ds+A(φq(Υ))ψ(t) +B(φq(Υ))φ(t)

]

≤ (λ1
4 )q−1R

[

Λ2

ρ
φq(

∫ 1

0
g(τ)dτ) + Ãψ(t) + B̃φ(t)

]

≤ (λ1
4 )q−1R

(

Λ2

ρ
φq(

∫ 1

0 g(τ)dτ) + Λ[Ã+ B̃]

)

≤ r4
= ‖x‖.

(3.19)

Case 2) Suppose that f is unbounded. Choosing r4 > max{2r3, r̄4} such that
f(t, x) ≤ f(t, r4) for t ∈ [0, 1], x ∈ (0, r4). Then for x ∈ ∂Pr4 we have

|A(φq(Υ))| ≤
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m−2
∑

i=1

ai

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt ρ−

m−2
∑

i=1

aiφ(ξi)

m−2
∑

i=1

bi

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt −
m−2
∑

i=1

biφ(ξi)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×

(

1

4

)q−1

(max f∞ + ε)q−1r4

:= Ã

(

1

4

)q−1

(max f∞ + ε)q−1r4, (3.20)
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and

|B(φq(Υ))| ≤
1

∆

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−

m−2
∑

i=1

aiψ(ξi)

m−2
∑

i=1

ai

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt

ρ−

m−2
∑

i=1

biψ(ξi)

m−2
∑

i=1

bi

∫ 1

0

G(ξi, t)φq

(
∫ 1

0

g(τ)dτ

)

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

×

(

1

4

)q−1

(max f∞ + ε)q−1r4

:= B̃

(

1

4

)q−1

(max f∞ + ε)q−1r4. (3.21)

Therefore, by (3.20) and (3.21), for x ∈ ∂Pr4 we have

‖Tx‖ = max
t∈J

∣

∣

∣

∣

∫ 1

0 G(t, s)φq(Υ)ds+A(φq(Υ))ψ(t) +B(φq(Υ))φ(t)

∣

∣

∣

∣

≤ (λ1
4 )q−1(max f∞ + ε)q−1r4

[

Λ2

ρ
φq(

∫ 1

0 g(τ)dτ) + max
t∈J

[Ãψ(t) + B̃φ(t)]

]

≤ (λ1
4 )(max f∞ + ε)q−1r4

(

Λ2

ρ
φq(

∫ 1

0
g(τ)dτ) + Λ[Ã+ B̃]

)

≤ r4
= ‖x‖.

(3.22)
Applying (ii) of Lemma 2.5 to (3.16) and (3.19) or (3.22) yields that T has a fixed

point x∗∗ ∈ P̄r3,r4 , r3 ≤ ‖x∗∗‖ ≤ r4 and x∗∗(t) ≥ σ̄‖x∗∗‖ > 0, t ∈ [0, 1]. Thus it
follows that BVP (1.1) has a positive solution x∗∗. The proof is complete. �
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