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Abstract. In this paper we develop the generalized quasilinearization method for
partial integro-differential equations of parabolic type. We consider the situation
when the nonlinearties satisfy a regularity, a monotonicity, and a Lipschitz condi-
tion. Using the natural upper and lower solutions we develop two sequences whose
elements are solutions of simpler nonlinear differential equations, and the sequences
converge uniformly and monotonically to the unique solution of the nonlinear integro-
differential equation.We further prove that the rate of convergence is cubic. As an
application a numerical example is presented.
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1. Introduction

The method of quasilinearization [1, 2] combined with the technique of upper and
lower solutions has been extended recently to a wide variety of nonlinear problems.
It has been referred to as a generalized quasilinearization method. See [3, 7, 9] for
details and [10, 11] for applications.

In the nuclear reactor model if the effect of the temperature feedback is taken
into consideration the neutron flux u ≡ u(t, x) is governed by a Volterra type integro-
differential equation. On the other hand, in the study of nerve propagation, a simpli-
fied Hodgkin-Huxley model (see [15]) for the propagation of a voltage pulse through a
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nerve axon is governed by a similar Volterra type integro-differential equation. They
also occur in structured population models. Motivated by above models we consider
nonlinear parabolic integro-differential equations in this paper. In [16] the authors
obtained by using generalized quasilinearization method a quadratic order of con-
vergence for nonlinear integro-differential equations of parabolic type. They have
considered situations when the forcing function is convex and they have used lin-
ear iterates to obtain the solution of the nonlinear integro-differential equation. In
addition, the rate of convergence is quadratic. However, in [4] they have used gen-
eralized monotone method and in [12] extended quasilinearization method to obtain
higher order of convergence for ordinary differential equations. See [6, 7] for mono-
tone method for a variety of nonlinear problems. In this paper we extend the above
results when the second derivative of the forcing function is nondecreasing in u and
satisfies a one sided Lipschitz condition in u. Using an appropriate iterative scheme
and lower and upper solutions under suitable conditions, we obtain natural sequences
which converge to the unique solution of the nonlinear integro-differential equations of
Volterra’s type and the rate of convergence is cubic. Finally, we provide a numerical
example to demonstrate the applicability of generalized quasilinearization method we
have developed here to solve nonlinear parabolic integro-differential equations. For
recent results on higher order of convergence see [13, 14].

2. Preliminaries

In this section we list the assumptions and recall some known existence and compar-
ison theorems which we need in our main result.
Let us consider a nonlinear second order parabolic integro-differential equation of the
form

Lu = f(t, x, u(t, x)) +
∫ t

0
g(t, x, s, u(s, x))ds in QT ,

u(t, x) = Φ(t, x), x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(2.1)

where Ω is a bounded domain in Rm with boundary ∂Ω ∈ C2+γ (γ ∈ (0, 1)) and
closure Ω, QT = (0, T ) × Ω, QT = [0, T ] × Ω, T > 0. Let L be a second order
differential operator defined by

L =
∂

∂t
− L, (2.2)

where

L =

m
∑

i,j=1

ai,j(t, x)
∂2

∂xi∂xj

+

m
∑

i=1

bi(t, x)
∂

∂xi

. (2.3)

Here we recall some known auxiliary results and list the following assumptions for
convenience which will be needed for our main result.

(A0) (i) For each i, j = 1, . . . , m, ai,j , bj ∈ C
γ

2
,γ [QT , R], and L is strictly uniformly

parabolic in QT , that means ai,j , bj are Hölder continuous of order γ
2

and γ in t and x respectively;
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(ii) ∂Ω belongs to the class C2+γ , that means the boundary is Hölder con-
tinuous of order 2 + γ;

(iii) f ∈ C
γ

2
,γ [[0, T ]×Ω×R, R], g ∈ C

γ

2
,γ [[0, T ]×Ω×R2, R] that is f(t, x, u),

g(t, x, u) are Hölder continuous in t and (x, u) with exponents γ
2 and γ,

respectively;

(iv) Φ ∈ C1+ γ

2
,2+γ [[0, T ]× ∂Ω, R] and u0(x) ∈ C2+γ [Ω, R];

(Note that Φ and u0(x) are Hölder continuous in t and x of the appro-
priate order mentioned above.)

(v) u0(x) = Φ(0, x), Φt = Lu0 + f(0, x, u0) for t = 0 and x ∈ ∂Ω.

We need the following definition.

Definition 2.1. The functions α0 , β0 ∈ C1,2[QT , R] with g(t, x, u) nondecreasing in
u are said to be lower and upper solutions of (2.1), respectively, if

Lα0 ≤ f(t, x, α0(t, x)) +
∫ t

0
g(t, x, s, α0(s, x))ds in QT ,

α0(t, x) ≤ Φ(t, x), x ∈ ∂Ω,

α0(0, x) ≤ u0(x), x ∈ Ω,

and

Lβ0 ≥ f(t, x, β0(t, x)) +
∫ t

0
g(t, x, s, β0(s, x))ds in QT ,

β0(t, x) ≥ Φ(t, x), x ∈ ∂Ω,

β0(0, x) ≥ u0(x), x ∈ Ω.

Next we recall a known existence theorem for (2.1) which we need in our main
results.

Theorem 2.1. Assume that (A0) holds. Then (2.1) has a unique smooth solution
u(t, x) ∈ C1+ γ

2
,2+γ [QT , R].

See [5] for details.
Also we recall positivity and comparison theorems which we need to prove the mono-
tonicity and the order of convergence in our main result.

Theorem 2.2. Let u(t, x) ∈ C
1+γ

2
,1+γ [QT , R] be such that

Lu + cu ≥ 0 in QT ,

u(t, x) ≥ 0, x ∈ ∂Ω,

u(0, x) ≥ 0, x ∈ Ω,

and c ≡ c(t, x) is a bounded function in QT . Then u(t, x) ≥ 0 in QT .

See [15] for details.
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Theorem 2.3. Assume that

(i) fu(t, x, u) and gu(t, x, s, u) are bounded functions with g(t, x, s, u) nondecreasing
in u on QT .

(ii) α(t, x) and β(t, x) satisfy

Lα ≤ f(t, x, α(t, x)) +
∫ t

0 g(t, x, s, α(s, x))ds in QT ,

Lβ ≥ f(t, x, β(t, x)) +
∫ t

0 g(t, x, s, β(s, x))ds in QT ,

with
α(t, x) ≤ β(t, x), x ∈ ∂Ω,

α(0, x) ≤ β(0, x), x ∈ Ω.

Then α(t, x) ≤ β(t, x) on QT .

See [16] for details.
The next comparison result follows from Lemma 6.2 in [3] and [8] .

Theorem 2.4. Suppose that

(i) g(t, x, s, u) is monotone nondecreasing in u for each fixed point (t,x,s),

(ii) α(t, x) satisfies

Lα ≤ f(t, x, α(t, x)) +
∫ t

0 g(t, x, s, α(s, x))ds in QT ,

α(t, x) = 0, x ∈ ∂Ω,

α0(0, x) = u0(x), x ∈ Ω,

(iii) r(t) is the solution of the following ordinary integro-differential equation

r′ = h1(t, r) +
∫ t

0 h2(t, s, r))ds,

r(0) = max{maxx∈Ω u0(x), 0},

where

h1(t, r) ≥ max
x∈Ω

f(t, x, r) and h2(t, s, r) ≥ max
x∈Ω

g(t, x, s, r).

Then α(t, x) ≤ r(t) on QT .

3. Main Results

In this section we extend the method of generalized quasilinearization to (2.1) with
cubic order of convergence. This has been achieved under weaker assumptions than
the usual convexity assumption to the nonlinear integro-differential equations. We
obtain cubic convergence when the nonlinearity of the iterates is quadratic. This is
precisely our main result, which we state below.
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Theorem 3.1. Assume that all of (A0) holds except (iii); further assume that

(i) α0, β0 are lower and upper solutions of (2.1) with α0(t, x) ≤ β0(t, x) on QT .

(ii)
∂lf(t, x, u)

∂ul ,
∂lg(t, x, s, u)

∂ul exist and are bounded functions on QT for

l = 0, 1, 2 such that
∂f l(t, x, u)

∂ul ,
∂lg(t, x, s, u)

∂ul ∈ C
γ

2
,γ [QT × R, R].

(iii) Also g is a nondecreasing function in u on QT such that

gu(α0) ≥ guu(β0)(β0 − α0)

and

0 ≤
∂2f(t, x, η1)

∂u2 −
∂2f(t, x, η2)

∂u2 ≤ M1(η1 − η2) on QT ,

0 ≤
∂2g(t, x, ξ1)

∂u2 −
∂2g(t, x, ξ2)

∂u2 ≤ M2(ξ1 − ξ2) on QT ,

whenever
α0(t, x) ≤ η2(t, x) ≤ η1(t, x) ≤ β0(t, x),

α0(t, x) ≤ ξ2(t, x) ≤ ξ1(t, x) ≤ β0(t, x).

Then there exist monotone sequences {αn(t, x)} , {βn(t, x)}, n ≥ 0 which converge
uniformly and monotonically to the unique solution of (2.1) and the convergence is of
order 3.

Proof. Let us first consider the following equations:

Lw = F1(t, x, α; w) +
∫ t

0
G1(t, x, s, α(s, x); w(s, x))ds

=

2
∑

i=0

∂if(t, x, α)
∂ui

(w − α)i

i!

+

∫ t

0

2
∑

i=0

∂ig(t, x, s, α(s, x))

∂ui

(w(s, x) − α(s, x))i

i!
ds in QT ,

w(t, x) = Φ(t, x), x ∈ ∂Ω,

w(0, x) = u0(x), x ∈ Ω,

(3.1)

and

Lv = F2(t, x, β; v) +
∫ t

0
G2(t, x, s, β(s, x); v(s, x))ds

=

2
∑

i=0

∂if(t, x, β)

∂ui

(v − β)i

i!

+

∫ t

0

2
∑

i=0

∂ig(t, x, s, β(s, x))

∂ui

(v(s, x) − β(s, x))i

i!
ds in QT ,

v(t, x) = Φ(t, x), x ∈ ∂Ω,

v(0, x) = u0(x), x ∈ Ω,

(3.2)
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where α(t, x) ≤ v, w ≤ β(t, x) and α(0, x) ≤ u0(x) ≤ β(0, x).
Initially, we prove (α0, β0) are lower and upper solutions of (3.1) and (3.2), re-

spectively.
Let α = α0 and β = β0 in (3.1). Then we have

Lα0 ≤ f(t, x, α0) +
∫ t

0 g(t, x, s, α0(s, x))ds

= F1(t, x, α0; α0) +
∫ t

0 G1(t, x, s, α0(s, x); α0(s, x))ds,

α0(t, x) ≤ Φ(t, x), x ∈ ∂Ω,

α0(0, x) ≤ u0(x), x ∈ Ω,

(3.3)

Lβ0 ≥ f(t, x, β0) +
∫ t

0 g(t, x, s, β0(s, x))ds

=

1
∑

i=0

∂if(t, x, α0)
∂ui

(β0 − α0)
i

i!
+

∂2f(t, x, ξ1)
∂u2

(β0 − α0)
2

(2)!

+

∫ t

0

[ 1
∑

i=0

∂ig(t, x, s, α0)

∂ui

(β0 − α0)
i

i!
+

∂2g(t, x, s, ξ2)

∂u2

(β0 − α0)
2

(2)!

]

ds

≥

2
∑

i=0

∂if(t, x, α0)

∂ui

(β0 − α0)
i

i!
+

∫ t

0

[ 2
∑

i=0

∂ig(t, x, s, α0)

∂ui

(β0 − α0)
i

i!

]

ds

= F1(t, x, α0; β0) +
∫ t

0
G1(t, x, s, α0; β0)ds,

β0(t, x) ≥ Φ(t, x), x ∈ ∂Ω,

β0(0, x) ≥ u0(x), x ∈ Ω,

(3.4)
where α0 ≤ ξ1, ξ2 ≤ β0.

By (3.3) and (3.4) we can conclude that α0 and β0 are the lower and upper
solutions of (3.1). To apply Theorem 2.1 we need to verify (iii) of (A0) relative to the

equation (3.1). For η ∈ C
1+γ

2
,1+γ [QT , R] such that α0(x, t) ≤ w(x, t), η(t, x) ≤ β0(t, x)

on QT we have

F1(t, x, η; w) =

2
∑

i=0

∂if(t, x, η(t, x))
∂ui

[w(t, x) − η(t, x)]i

i!

=

2
∑

i=0

∂if(t, x, η(t, x))

∂ui

Pi
j=0

(−1)j(i
j)w

i−j(t, x)ηj(t, x)
i!

=

2
∑

i=0

i
∑

j=0

(−1)j(i
j)

i!
∂if(t, x, η(t, x))

∂ui wi−j(t, x)ηj(t, x)

=

2
∑

i=0

i
∑

j=0

Ki,jdi,j(t, x)wi−j(t, x),

where Ki,j =
(−1)j(i

j)

i! and di,j(t, x) = ∂if(t,x,η(t,x))
∂ui ηj(t, x). We need to prove that

di,j(t, x) belongs to C
γ
2

,γ [QT , R] for i, j = 0, 1, 2. We will only show the details for
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one term di,j(t, x) when |η| ≤ C1 and |∂
if

∂ui | ≤ C2.

|di,j(t, x) − di,j(t, x)| =
∣

∣

∣

∂if(t, x, η(t, x))

∂ui ηj(t, x) −
∂if(t, x, η(t, x))

∂ui ηj(t, x)
∣

∣

∣

≤
∣

∣

∣

∂if(t, x, η(t, x))
∂ui ηj(t, x) −

∂if(t, x, η(t, x))
∂ui ηj(t, x)

∣

∣

∣

+
∣

∣

∣

∂if(t, x, η(t, x))
∂ui ηj(t, x) −

∂if(t, x, η(t, x))
∂ui ηj(t, x)

∣

∣

∣

= |ηj(t, x)|
∣

∣

∣

∂if(t, x, η(t, x))

∂ui −
∂if(t, x, η(t, x))

∂ui

∣

∣

∣

+
∣

∣

∣

∂if(t, x, η(t, x))
∂ui

∣

∣

∣
|η(t, x) − η(t, x)|

∣

∣

∣

j−1
∑

l=0

ηj−l−1(t, x)ηl(t, x)
∣

∣

∣

≤ C
j
1Ct(

∂if

∂ui )(|t − t|
γ

2 + Ct(η)|t − t|
1+γ

2 )

+jC2
1C2Ct(η)|t − t|

1+γ

2

≤ Ct(F )|t − t|
γ

2 ,

where Ct(F ) depends on C1, C2, Ct(
∂if
∂ui ), Ct(η), and T . This shows that F1(t, x, α; w)

is Hölder continuous in t with exponent γ
2 . Similarly, we can prove that F1(t, x, α; w)

is Hölder continuous in (x, w) with exponent γ. That is:

|di,j(t, x) − di,j(t, x)| =
∣

∣

∣

∂if(t, x, η(t, x))
∂ui ηj(t, x) −

∂if(t, x, η(t, x))
∂ui ηj(t, x)

∣

∣

∣

≤ C
j
1Cx(∂if

∂ui )(‖x − x‖γ + Cx(η)‖x − x‖1+γ)

+jC2
1C2Cx(η)‖x − x‖1+γ

≤ Cx,w(F )|x − x|γ ,

where Cx,w(F ) depends on C1, C2, Cx(∂if
∂ui ), and Cx(η). Hence F1(t, x, α; w) is Hölder

continuous in t and (x, w) with exponents γ
2 and γ, respectively. The proof that

G1(t, x, α; w) is Hölder continuous in t and (x, w) with exponents γ
2 and γ, respectively,

follows the same lines. Similar conclusions hold for F2(t, x, β; v) and G2(t, x, β; v). It
follows by Theorem 2.1 that there exists a unique solution α1 of (3.1). One can prove
that α0 ≤ α1 ≤ β0. Let µ = α1 − α0. Then it follows that

Lµ = L(α1 − α0)

≥ F1(t, x, α0; α1) +
∫ t

0
G1(t, x, s, α0; α1)ds

−F1(t, x, α0; α0) −
∫ t

0
G1(t, x, s, α0; α0)ds

= F1u(t, x, α0; ξ1)µ +
∫ t

0
G1u(t, x, s, α0; ξ2)µds,

µ(t, x) = 0, x ∈ ∂Ω,

µ(0, x) = 0, x ∈ Ω.

Using this and applying Theorem 2.2 one can obtain µ ≥ 0 or α0 ≤ α1.
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Next let set µ = β0 − α1. Then

Lµ = L(β0 − α1)

≥ F1(t, x, α0; β0) +
∫ t

0 G1(t, x, s, α0; β0)ds

−F1(t, x, α0; α1) −
∫ t

0 G1(t, x, s, α0; α1)ds

= F1u(t, x, α0; ξ1)µ +
∫ t

0 G1u(t, x, s, α0; ξ2)µds,

µ(t, x) = 0, x ∈ ∂Ω,

µ(0, x) = 0, x ∈ Ω.

By Theorem 2.2 and above inequalities one can conclude that µ ≥ 0 or α1 ≤ β0.
Similarly we will prove now that (α0, β0) are lower and upper solutions of (3.2). Set
α = α0 and β = β0 in (3.2). Then we get

Lβ0 ≥ f(t, x, β0) +
∫ t

0
g(t, x, s, β0(s, x))ds

= F2(t, x, β0; β0) +
∫ t

0
G2(t, x, s, β0(s, x); β0(s, x))ds,

β0(t, x) ≥ Φ(t, x), x ∈ ∂Ω,

β0(0, x) ≥ u0(x), x ∈ Ω,

(3.5)

Lα0 ≤ f(t, x, α0) +

∫ t

0

g(t, x, s, α0(s, x))ds

=

1
∑

i=0

∂if(t, x, β0)

∂ui

(α0 − β0)
i

i!
+

∂2f(t, x, ξ1)
∂u2

(α0 − β0)
2

(2)!

+

∫ t

0

[

1
∑

i=0

∂ig(t, x, s, β0)

∂ui

(α0 − β0)
i

i!
+

∂2g(t, x, s, ξ2)

∂u2

(α0 − β0)
2

(2)!

]

ds

≤
2

∑

i=0

∂if(t, x, β0)
∂ui

(α0 − β0)
i

i!
+

∫ t

0

2
∑

i=0

∂ig(t, x, s, β0)

∂ui

(α0 − β0)
i

i!
ds

= F2(t, x, β0; α0) +
∫ t

0 G2(t, x, s, β0; α0)ds,

α0(t, x) ≤ Φ(t, x), x ∈ ∂Ω,

α0(0, x) ≤ u0(x), x ∈ Ω,

(3.6)

where α0 ≤ ξ1, ξ2 ≤ β0.
One can conclude that α0 and β0 are the lower and upper solutions of (3.2)

considering (3.5) and (3.6). By Theorem 2.1 there exists a unique solution β1 of
(3.2). We show that α0 ≤ β1 ≤ β0. Let µ = β0 − β1. Then we have

Lµ = L(β0 − β1)

≥ F2(t, x, β0; β0) +
∫ t

0
G2(t, x, s, β0; β0)ds

−F2(t, x, β0; β1) −
∫ t

0
G2(t, x, s, β0; β1)ds

= F2u(t, x, β0; ξ1)µ +
∫ t

0
G2u(t, x, s, β0; ξ2)µds,

µ(t, x) = 0, x ∈ ∂Ω,

µ(0, x) = 0, x ∈ Ω.

Applying again Theorem 2.2 we can conclude that µ ≥ 0 or β0 ≥ β1.
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Next set µ = β1 − α0. Then

Lµ = L(β1 − α0)

≥ F2(t, x, β0; β1) +
∫ t

0
G2(t, x, s, β0; β1)ds

−F2(t, x, β0; α0) −
∫ t

0
G2(t, x, s, β0; α0)ds

= F2u(t, x, β0; ξ1)µ +
∫ t

0
G2u(t, x, s, β0; ξ2)µds,

µ(t, x) = 0, x ∈ ∂Ω,

µ(0, x) = 0, x ∈ Ω.

Using again Theorem 2.2 we can obtain that µ ≥ 0 or β1 ≥ α0. Hence α0 ≤ β1 ≤ β0.
Next we prove that β1 ≥ α1. We can get

f(t, x, α1) +
∫ t

0
g(t, x, s, α1(s, x))ds

=

1
∑

i=0

∂if(t, x, α0)

∂ui

(α1 − α0)
i

i!
+

∂2f(t, x, ξ1)
∂u2

(α1 − α0)
2

(2)!

+

∫ t

0

[

1
∑

i=0

∂ig(t, x, s, α0)

∂ui

(α1 − α0)
i

i!
+

∂2g(t, x, s, ξ2)

∂u2

(α1 − α0)
2

(2)!

]

ds

≥

2
∑

i=0

∂if(t, x, α0)
∂ui

(α1 − α0)
i

i!
+

∫ t

0

[

2
∑

i=0

∂ig(t, x, s, α0)

∂ui

(α1 − α0)
i

i!

]

ds

= F1(t, x, α0; α1) +
∫ t

0 G1(t, x, s, α0; α1)
= Lα1,

α1(t, x) = Φ(t, x), x ∈ ∂Ω,

α1(0, x) = u0(x), x ∈ Ω,

(3.7)

and

f(t, x, β1) +
∫ t

0
g(t, x, s, β1(s, x))ds

=

1
∑

i=0

∂if(t, x, β0)

∂ui

(β1 − β0)
i

i!
+

∂2f(t, x, ξ1)
∂u2

(β1 − β0)
2

(2)!

+

∫ t

0

[

1
∑

i=0

∂ig(t, x, s, β0)

∂ui

(β1 − β0)
i

i!
+

∂2g(t, x, s, ξ2)

∂u2

(β1 − β0)
2

(2)!

]

ds

≤

2
∑

i=0

∂if(t, x, β0)
∂ui

(β1 − β0)
i

i!
+

∫ t

0

[

2
∑

i=0

∂ig(t, x, s, β0)

∂ui

(β1 − β0)
i

i!

]

ds

= F2(t, x, β0; β1) +
∫ t

0 G2(t, x, s, β0; β1)
= Lβ1,

β1(t, x) = Φ(t, x), x ∈ ∂Ω,

β1(0, x) = u0(x), x ∈ Ω.

(3.8)

By (3.7) and (3.8) together with Theorem 2.3 one can obtain that β1 ≥ α1.
Hence we have α0 ≤ α1 ≤ β1 ≤ β0. Using this inequality and the method of

mathematical induction, one can show that

α0 ≤ α1 ≤ ... ≤ αn ≤ βn ≤ ... ≤ β1 ≤ β0 for all n.
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Let u be any solution of (2.1) such that α0 ≤ u ≤ β0 with α0(0) ≤ u0 ≤ β0(0)
on QT . Suppose for some u , we have αn ≤ u ≤ βn on QT . Set Φ1 = u − αn+1,
Φ2 = βn+1 − u so that

LΦ1 = Lu − Lαn+1

= f(t, x, u) +
∫ t

0 g(t, x, s, u(s, x))ds

−
2

∑

i=0

∂if(t, x, αn)
∂ui

(αn+1 − αn)i

i!

−

∫ t

0

2
∑

i=0

∂ig(t, x, s, αn(s, x))

∂ui

(αn+1 − αn)i

i!
ds

≥ f(t, x, u) − f(t, x, αn+1) +
∫ t

0 [g(t, x, s, u) − g(t, x, s, αn+1(s, x))]ds

≥ fu(t, x, η1)Φ1 +
∫ t

0 [gu(t, x, s, η2)Φ1]ds,

Φ1(t, x) = 0, x ∈ ∂Ω,

Φ1(0, x) = 0, x ∈ Ω,

LΦ2 = Lβn+1 − Lu

= −f(t, x, u) −
∫ t

0
g(t, x, s, u(s, x))ds

+

2
∑

i=0

∂if(t, x, βn)

∂ui

(βn+1 − βn)i

i!

+
∫ t

0

2
∑

i=0

∂ig(t, x, s, βn(s, x))
∂ui

(βn+1 − βn)i

i!
ds

≥ −f(t, x, u) + f(t, x, βn+1)

+
∫ t

0
[−g(t, x, s, u(s, x)) + g(t, x, s, βn+1(s, x))]ds

≥ fu(t, x, η3)Φ2 +
∫ t

0
[gu(t, x, s, η4)Φ2]ds,

Φ2(t, x) = 0, x ∈ ∂Ω,

Φ2(0, x) = 0, x ∈ Ω,

where η1, η2 are between u and αn+1, and η3, η4 are between u and βn+1. It is clear
that αn+1 ≤ u ≤ βn+1 by Theorem 2.2. Since α0 ≤ u ≤ β0, this proves by induction
that αn ≤ u ≤ βn for all n. From this we can conclude

α0 ≤ α1 ≤ ... ≤ αn ≤ u ≤ βn ≤ ... ≤ β1 ≤ β0.

Since {αn(t, x)} and {βn(t, x)} are in C1+ γ
2

,2+γ [QT , R], one can show that these
sequences converge to (ρ, r) using the same technique as in [15].

That is
lim

n→∞

αn(t, x) = ρ(t, x) ≤ u ≤ r(t, x) = lim
n→∞

βn(t, x).

Now we need to prove that ρ(t, x) ≥ r(t, x). From (3.1) and (3.2) we get

Lρ(t, x) = F1(t, x, ρ; ρ) +
∫ t

0 G1(t, x, s, ρ(s, x); ρ(s, x))ds

= f(t, x, ρ) +
∫ t

0 g(t, x, s, ρ(s, x))ds,

ρ(t, x) = Φ(t, x), x ∈ ∂Ω,

ρ(0, x) = u0(x), x ∈ Ω,



164 T. G. Melton, A. S. Vatsala

and
Lr(t, x) = F2(t, x, r; r) +

∫ t

0 G2(t, x, s, r(s, x); r(s, x))ds

= f(t, x, r) +
∫ t

0 g(t, x, s, r(s, x))ds,

r(t, x) = Φ(t, x), x ∈ ∂Ω,

r(0, x) = u0(x), x ∈ Ω.

Setting Θ = r(t, x) − ρ(t, x), we get

LΘ = Lr − Lρ

= f(t, x, r) +
∫ t

0
g(t, x, s, r(s, x))ds − f(t, x, ρ) −

∫ t

0
g(t, x, s, ρ(s, x))ds

≤ L1(r − ρ) +
∫ t

0
L2(r − ρ)ds

≤ L1Θ +
∫ t

0
L2Θds, L1, L2 ≥ 0,

Θ(t, x) = 0, x ∈ ∂Ω,

Θ(0, x) = 0, x ∈ Ω,

using assumptions (iii) of the hypotesis. Now by Theorem 2.2 we can conclude that
r(t, x) ≤ ρ(t, x). This proves r(t, x) = ρ(t, x) = u(t, x) is the unique solution of (2.1).
Hence {αn(t, x)} and {βn(t, x)} converge uniformly and monotonically to the unique
solution of (2.1).

Let us consider the order of convergence of {αn(t, x)} and {βn(t, x)} to the unique
solution u(t, x) of (2.1). To do this, set

pn(t, x) = u(t, x) − αn(t, x) ≥ 0,

qn(t, x) = βn(t, x) − u(t, x) ≥ 0.

Using the definitions for αn, βn, the Taylor expansion with Lagrange remainder, and
the Mean Value Theorem, we obtain

Lpn+1 = Lu − Lαn+1

= f(t, x, u) +
∫ t

0
g(t, x, s, u(s, x))ds

−

2
∑

i=0

∂if(t, x, αn)

∂ui

(αn+1 − αn)i

i!

−

∫ t

0

2
∑

i=0

∂ig(t, x, s, αn(s, x))

∂ui

(αn+1 − αn)i

i!
ds

= f(t, x, u) − f(t, x, αn+1) +
∂2f(t, x, ξ1)

∂u2
(αn+1 − αn)2

(2)!

−
∂2f(t, x, αn)

∂u2
(αn+1 − αn)2

(2)!
+

∫ t

0

[

g(t, x, s, u) − g(t, x, s, αn+1(s, x))

+
∂2g(t, x, s, ξ2(s, x))

∂u2
(αn+1 − αn)2

(2)!

−
∂2g(t, x, s, αn(s, x))

∂u2
(αn+1 − αn)2

(2)!

]

ds

≤ fu(t, x, η1)(u − αn+1) + M1
(2)!

(ξ1 − αn)(αn+1 − αn)2

+

∫ t

0

[

gu(t, x, s, η2)(u − αn+1) +
M2

(2)!
(ξ2 − αn)(αn+1 − αn)2

]

ds
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≤ K1pn+1 + K2p
3
n +

∫ t

0

[K3pn+1 + K4p
3
n]ds,

pn+1(t, x) = 0, x ∈ ∂Ω,

pn+1(0, x) = 0, x ∈ Ω,

where αn ≤ ξ1, ξ2 ≤ αn+1, αn+1 ≤ η1, η2 ≤ u, |fu| ≤ K1,
M1

(2)!
= K2, |gu| ≤ K3, and

M2
(2)!

= K4.

Let r(t) be the solution of the following ordinary integro-differential equation:

r′(t) = K1r(t) + K3

∫ t

0

r(s)ds + (K2 + K4T )max
Ω

p3
n, r(0) = 0.

Now computing the solution of the above equation, we get

r(t) ≤
2exp(

√

K2
1 + 4K3 T )

√

K2
1 + 4K3

[(K2 + K4T )max
Ω

p3
n].

One can see that
∫ t

0

K4p
3
nds ≤ K4T max

Ω
p3

n.

It follows that pn+1(t, x) ≤ r(t) by Theorem 2.4. Hence

max
QT

|pn+1(t, x)| ≤ [(K2 + K4T )]
[2exp(

√

K2
1 + 4K3 T )

√

K2
1 + 4K3

]

max
QT

|p3
n(t, x)|.

Similarly, one can obtain that

max
QT

|qn+1(t, x)| ≤ [(K2 + K4T )]
[2exp(

√

K2
1 + 4K3 T )

√

K2
1 + 4K3

]

max
QT

|q3
n(t, x)|.

Hence the order of convergence of the sequences {αn(t, x)}, {βn(t, x)} is cubic. �

4. Numerical Results

In this section we demonstrate the applications of the main result which we have
developed in Section 3. Let us consider the following example:

ut − uxx = u4 − 9u + sin2 t +

∫ t

0

[u3(s, x) + 6u(s, x)]ds, 0 ≤ x, t ≤ 1

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1
u(0, x) = sin(πx), 0 ≤ x ≤ 1.

(4.1)
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Choosing α0(t, x) ≡ 0 and β0(t, x) ≡ 1, we have

0 ≤ sin2 t, 0 ≤ t ≤ 1,

0 ≥ 1 − 9 + sin2 t + 7t, 0 ≤ t ≤ 1,

0 ≤ 1, 0 ≤ t ≤ 1,

0 ≤ sin(πx) ≤ 1, 0 ≤ x ≤ 1.

Hence α0(t, x) ≡ 0 and β0(t, x) ≡ 1 are natural lower and upper solutions for (4.1)
respectively. Denote

f(t, x, u) = u4(t, x) − 9u(t, x) + sin2 t,

g(t, x, u) = u3(t, x) + 6u(t, x).

It is true that

gu(0) = 3(0)2 + 6 ≥ guu(1)(1 − 0) = 6(1)(1 − 0),

0 ≤ fuu(t, x, u1) − fuu(t, x, u2) ≤ 24(u1 − u2), u1 ≥ u2,

0 ≤ guu(t, x, u1) − guu(t, x, u2) ≤ 6(u1 − u2), u1 ≥ u2.

Hence we can apply iterates of Theorem 3.1 with the Lipschitzian constants M1 = 24
and M2 = 6 to find the approximate solution of the equation (4.1). After only three
iterates of α and β we can derive the approximate solution of (4.1) as shown in the
following table for t = 0.5:

Table of Three α, β - Iterates and the Solution
x α1(t) α2(t) α3(t) u β3(t) β2(t) β1(t)

0.1 0.0050893 0.0050893 0.0050893 0.0050893 0.0050893 0.0051042 0.0614934
0.1 0.0085013 0.0085026 0.0085026 0.0085026 0.0085026 0.0085225 0.1046710
0.3 0.0106567 0.0106573 0.0106573 0.0106573 0.0106573 0.0107025 0.1257870
0.4 0.0118672 0.0118694 0.0118694 0.0118694 0.0118694 0.0119073 0.1447620
0.5 0.0122466 0.0122471 0.0122471 0.0122471 0.0122471 0.0123077 0.1435990
0.6 0.0118866 0.0118888 0.0118888 0.0118888 0.0118888 0.0119275 0.1451940
0.7 0.0106907 0.0106913 0.0106913 0.0106913 0.0106913 0.0107380 0.1265440
0.8 0.0085404 0.0085417 0.0085417 0.0085417 0.0085417 0.0085631 0.1056010
0.9 0.0051180 0.0051188 0.0051188 0.0051188 0.0051188 0.0051348 0.0622288

On the Figure 1 we can see the α-iterates ( with unbroken line ) and the β-iterates
(with broken line ) for t = 0.5.
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Figure 1.

The graph on the Figure 2 shows the approximate solution of (4.1) using the
finite-difference method and Mathematica for each iterate.
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Figure 2.

Since the convergence of the iterates is of order 3 we obtained the approximate
solution very fast, in three steps only.

Remark 4.1. The above result can be extended to include the situation when

f(t, x, u) = f1(t, x, u) + f2(t, x, u),

where f1(t, x, u) satisfies the hypothesis of the theorem whereas f2(t, x, u) satisfies

0 ≥
∂2f2(t, x, ζ1)

∂u2 −
∂2f2(t, x, ζ2)

∂u2 ≥ − M3(ζ1 − ζ2) on QT

for α0(t, x) ≤ ζ2(t, x) ≤ ζ1(t, x) ≤ β0(t, x).
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Conclusions

In the above theorem we assumed that the 2nd derivative of the functions f(t, x, u)
and g(t, x, u) with respect to u are nondecreasing and one-sided Lipschitzian with
respect to u. We have developed iterates of nonlinearity of order 2 which converge
rapidly (order 3) to the unique solution of nonlinear integro-differential equation of
parabolic type. The error in this numerical computation of solution can be made
as small as possible. We demonstrate the application of the theoretical result with
numerical simulation.
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