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Abstract. Based on Fubini theorem, the mean square exponential stability of dis-
tributed parameter type Cohen-Grossberg neural networks with damped stochastic
disturbance is discussed in this paper. On the basis of the linear matrix inequal-
ity (LMI) approach, and also the Lyapunov functional method combined with the
stochastic analysis, several stability criteria are derived. The proposed criteria can
be checked readily by using some standard numerical packages, and no tuning of
parameters is required.
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1. Introduction

Since the seminal work for Cohen-Grossberg neural networks in [1], the past two
decades have witnessed the successful applications of Cohen-Grossberg neural net-
works in many areas such as classification, associative memory, parallel computation,
especially in solving optimization problems. In practice, due to the finite speeds
of the switching and transmission of signals in a network, time delays unavoidably
exist in a working network, and they may lead to oscillation, instability, bifurca-
tion or chaos of networks. Consequently, the stability analysis problems for delayed
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Cohen-Grossberg neural networks have gained considerable research attention [2-6]
and references therein, where the delay type can be constant, time-varying, or dis-
tributed, and the stability criteria can be delay-dependent or delay-independent. For
example, Cao and Liang [2] analyzed the boundedness and stability of a class of
Cohen-Grossberg neural networks with time-varying delays by using the inequalities
technique and Lyapunov method. Yuan and Cao [3] gave an analysis of global asymp-
totic stability (GAS) for a delayed Cohen-Grossberg neural network via nonsmooth
analysis. Chen and Rong [5] discussed a class of Cohen-Grossberg neural networks
with delays by constructing suitable Lyapunov functionals and in combination with
the LMI approach, and derived several novel criteria guaranteeing the GAS of the
equilibrium point for this system. However, neural network models may arise diffu-
sion effect when electrons are moving in asymmetric electromagnetic field, so we must
consider the space is varying with the time. Refs. [7-12] have considered the stability
of neural networks with diffusion terms, which are expressed by partial differential
equations. It is also common to consider the diffusion effect in biological systems such
as immigration [13].

On the other hand, stochastic modelling plays an important role in many branches
of science and industry. An area of particular interest has been the automatic con-
trol of stochastic systems, with consequent emphasis being placed on the analysis of
stability in stochastic models [14, 15]. In [16], the authors first studied the stochastic
neural networks and some algebraic criterion of almost sure exponential stability and
instability are obtained. A strand of recent research in the stability of stochastic
equations with delay has focussed on the speed at which convergence to an equilib-
rium may take place in the presence of such damped external perturbations. We
highlight here the contribution of Mao [17], and Mao and Liao [18]. In these papers,
the exponential stability of solutions is considered.

To the best of our knowledge, few authors have considered the mean square expo-
nential stability of distributed parameter type or reaction-diffusion Cohen-Grossberg
neural networks with damped stochastic disturbance, and LMI approach is applied by
us in discussion of this problem. In this Letter, we analyze further problem of mean
square exponential stability of distributed parameter type Cohen-Grossberg neural
networks with damped stochastic disturbance and derive a set of simple sufficient
conditions in terms of LMI, which improve and extend the earlier works in Refs. [19-
22]. These possess important leading significance in the design and applications of
globally stable distributed parameter type recurrent neural networks, and are of great
interest in many applications.

The rest of this paper is organized as follows. In Section 2, the problem to be
studied is stated and some preliminaries are presented. Based on the Lyapunov stabil-
ity theory and Fubini theorem, in combination with LMI method, some mean square
exponential stability criteria for the distributed parameter type Cohen-Grossberg neu-
ral networks with damped stochastic disturbance are derived in Section 3. Finally,
conclusions are drawn in Section 4.
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Rn n-dimensional Euclidean space;
Rn×m set of all n × m real matrices;
AT , A−1 transpose of, inverse of any square matrix A, respectively;
I the n × n identity matrix;
‖A‖ norm of matrix A, i.e., ‖A‖ =

√
λmax(AT A), where λmax(·) (respec-

tively, λmin(·)) means the largest (respectively, smallest) eigenvalue of AT A.

Denote by L
p
F0

([−τ, 0]; Rn) the family of all F0-measurable C([−τ, 0]; Rn)-valued
random variables ϕ = {ϕ(θ) : −τ ≤ θ ≤ 0} such that sup

τ≤θ≤0
E|ϕ(θ)|p < ∞ where E{·}

stands for the mathematical expectation operator with respect to the given probability
measure P .

2. System description and preliminaries

In this paper, we consider the following distributed parameter type Cohen-Gross-
berg neural networks with damped stochastic disturbance

dui(t, x) =

[
− ci(ui(t, x))

(
di(ui(t, x)) −

N∑

k=1

∂

∂xk

(
Dik

∂ui

∂xk

)
−

n∑

j=1

aijgj(uj(t, x))

−

n∑

j=1

bijgj(uj(t − τj(t), x))

)]
dt +

m∑

j=1

σij(ui(t, x))dwj(t), (2.1)

for i = 1, 2, · · · , n, where n ≥ 2 is the number of neurons in the network; x =
(x1, x2, . . . , xl)

T ∈ Ω ⊂ Rl, Ω is a bounded compact set with smooth boundary ∂Ω
and mesΩ > 0 in space RN ; u(t) = [u1(t, x), u2(t, x), · · · , un(t, x)]T ∈ Rn denotes
the state variable at time t and in space x; ci(·) represents an amplification function,
and di(·) is an appropriately behaved function. A = (aij)n×n and B = (bij)n×n are
the connection weight matrix and delayed connection weight matrix, Amplification
functions ci(·), behaved functions di(·) and activation functions gi(·) are subject to
certain conditions to be specified later. The time-varying delays τj(t) are assumed
that 0 ≤ τ(t) = (τ1(t), τ2(t), · · · , τn(t))T , τ∗ = max(τj(t)) and max(τ̇j(t)) = τ̂ < 1 for
j = 1, · · · , n and t ≥ 0, where τ∗ and τ̂ are constants.

Furthermore, w(t) = [w1(t), w2(t), · · · , wm(t)]T ∈ Rm is an m-dimensional Brow-

nian motion defined on a complete probability space (Ω̃,F ,P) with a filtration {Ft}t≥0

generated by {w(s) : 0 ≤ s ≤ t}, where we associate Ω̃ with the canonical space gen-
erated by w(t), and denote by Ft the associated σ-algebra generated by w(t) with the
probability measure P . For (2.1), σ : Rn × R+ → Rn×m i.e. σ(x, t) = (σij(x, t))n×m.

The boundary condition and initial condition are given by

∂ui

∂n
:= (

∂ui

∂u1
,
∂ui

∂u2
, . . . ,

∂ui

∂uN
)T = 0, i = 1, 2, · · · , n, (2.2)

ζi(x)
∂ui(t, x)

∂n
+ ξi(x)ui(t, x) = 0, i = 1, 2, · · · , n, (2.3)
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and
ui(s, x) = φi(s, x), s ∈ [−τ∗, 0], i = 1, 2, · · · , n, (2.4)

where φi(s, x) ∈ L2
F0

([−τ∗, 0]; Rn) is bounded and continuous on [−τ∗, 0] × Ω.
We make the following assumptions:

(H1) ci(u) is bounded, positive and continuous; furthermore 0 < αi ≤ ci(u) ≤
αi, i = 1, 2, · · · , n;

(H2) di(u) is continuous, i.e., d
′

i(ui) ≥ ri > 0, r = min
1≤i≤n

(ri), i = 1, 2, · · · , n;

(H3) The activation function gi(xi) is bounded and there exist constant li > 0 such
that

|gi(x) − gi(y)| ≤ li|x − y|, i = 1, 2, · · · , n,

for arbitrary x, y ∈ R.

For further deriving the mean square exponential stability condition of the system
(2.1), the following definition and lemmas are needed.

Definition 2.1. System (2.1) is said to be pth moment exponentially stable if there
exists a pair of positive constants λ and c such that

E
( ∫

Ω

|u(t, x)|pdx
)
≤ cE

(∫

Ω

|φ(t, x)|pdx
)
e−λ, t ≥ 0 (2.5)

holds for any φ. In this case

lim
t→∞

sup
1

t
log
[
E
( ∫

Ω

|u(t, x)|pdx
)]

≤ −λ. (2.6)

The left-hand side of (2.5) is called the pth moment Lyapunov exponent of the solution.
When p = 2 it is usually called the exponential stability in mean square.

Lemma 2.1. ([23]) Let M(t), t ≥ 0 be a local martingale with M(0) = 0 a.s. Let
X(t), t ≥ 0 be an nonnegative Ft-adapted process such that E(X(0)) < ∞. If

X(t) ≤ X(0) + M(t) ∀t ≥ 0

almost surely, then
lim

t→∞
sup X(t) < ∞ a.s.

Lemma 2.2. Let x ∈ Rn, y ∈ Rn, and ε > 0. Then we have xT y + yT x ≤ εxT x +
εyT y.
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Proof. The proof follows from the inequality (ε1/2x − ε−1/2y)T (ε1/2x − ε−1/2y) ≥ 0
immediately. �

Lemma 2.3. (Boyd et al. [24]) Given constant matrices Σ1, Σ2, Σ3, where Σ1 = ΣT
1

and 0 < Σ2 = ΣT
2 , then

Σ1 + ΣT
3 Σ−1

2 Σ3 < 0

if and only if [
Σ1 ΣT

3

Σ3 −Σ2

]
< 0 or

[
−Σ2 Σ3

ΣT
3 Σ1

]
< 0.

Let C2,1(Rn × R+; R+) denote the family of all nonnegative functions V (u, t)
on Rn × R+ which are continuously twice differentiable in y and once differentiable
in t. For each V ∈ C2,1(Rn × R+; R+), define an operator LV, associated with the
stochastic neural network (2.1), from Rn × Rn × R+ to R by

LV = Vt(u, t) + Vu(u, t)

[
− C(u(t, x))

(
D(u(t, x)) −

n∑

i=1

N∑

k=1

∂

∂xk

(
Dik

∂ui

∂xk

)

−AG(u(t, x)) − BG(u(t − τ(t), x))

)]

+
1

2
traceσT (u(t, x))Vuu(u, t)σ(u(t, x)),

where
Vt(u, t) = ∂V (u,t)

∂t , Vu(u, t) =
(

∂V (u,t)
∂u1

, · · · ,
∂V (u,t)

∂un

)
,

Vuu(u(t), t) =
(

∂2V (u,t)
∂ui∂uj

)

n×n
,

C(u(t, x)) = diag
(
c1(u1(t, x)), · · · , cn(un(t, x))

)
∈ Rn×n,

D(u(t, x)) =
(
d1(u1(t, x)), · · · , dn(un(t, x))

)T

∈ Rn,

G(u(t, x)) =
(
g1(u1(t, x)), · · · , gn(un(t, x))

)T

∈ Rn,

G(u(t − τ(t), x)) =
(
g1(u1(t − τ1(t), x)), · · · , gn(un(t − τn(t), x))

)T

∈ Rn.

Let us stress that LV is defined on Rn×Rn×R+ while V on Rn×R+. Let C(Rn; R+)
denote the family of all continuous functions from Rn to R+ while C([−T, 0]; Rn),
C(R; R+), etc.
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3. Main results

In this section, we shall present a mean square exponential stability criterion of
the system (2.1). The main theorem given below shows that the stability criterion
can be expressed in terms of the feasibility of a linear matrix inequality.

Theorem 3.1. Suppose (H1)− (H3) hold. Assume that there exist a pair of positive
constants δ and γ such that

traceσT (u(t, x))σ(u(t, x)) ≤ δe−γu(t,x). (3.1)

Assume also that there exists a positive definite matrix Q and positive diagonal ma-
trices P, Λ such that

Θ1 =




−2PΓ + Λ PA PB

AT P Q − ΛL−2 0
BT P 0 −(1 − τ̂ )Q



 < 0, (3.2)

where Γ = diag(r1, r2, · · · , rn), L = diag(l1, l2, · · · , ln). Then the distributed parame-
ter type Cohen-Grossberg neural network (2.1) with damped stochastic disturbance is
globally exponentially stable in mean square, and the mean square Lyapunov exponen-
tial estimate is:

lim
T→+∞

1

T
log(‖u(T, x)‖2) ≤ −α. (3.3)

Proof. For convenience, denote ui = ui(t, x). Consider the following Lyapunov func-
tional:

V (u, t) =

∫

Ω

[
2

n∑

i=1

pi

∫ ui

0

s

ci(s)
ds +

∫ t

t−τ(t)

GT (u(s, x))QG(u(s, x))ds

]
dx. (3.4)

Then we have

∫

Ω

1

α

n∑

i=1

piu
2
i (t, x)dx ≤ V (u, t) ≤

∫

Ω

[
1

α

n∑

i=1

piu
2
i (t, x)+ τ∗‖Q‖G2(u(t, x))

]
dx, (3.5)

or

∫

Ω

1

α
uT (t, x)Pu(t, x)dx ≤ V (x, t) ≤

∫

Ω

[
1

α
uT (t, x)Pu(t, x) + τ∗‖Q‖G2(u(t, x))

]
dx.

(3.6)
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Applying the Itô’s formula to V (u(t), t) and using the assumptions we derive that:

dV (u(t), t)

=

∫

Ω

{
− 2

n∑

i=1

piui

(
di(ui) −

N∑

k=1

∂

∂xk

(
Dik

∂ui

∂xk

)

−
n∑

j=1

aijgj(uj(t, x)) −
n∑

j=1

bijgj(uj(t − τj(t), x))

)
+ GT (u(t, x))QG(u(t, x))

−(1 − τ̇ (t))GT (u(t − τ(t), x))QG(u(t − τ(t), x))

}
dxdt

+

∫

Ω

traceσT (u(t, x))σ(u(t, x))dx + 2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(ui)dwj(t)dx

≤

∫

Ω

{
2

n∑

i=1

piui

N∑

k=1

∂

∂xk

(
Dik

∂ui

∂xk

)

−uT (t, x)(PΓ + ΓT P )u(t, x) + 2uT (t, x)PAG(u(t, x))

+2uT (t, x)PBG(u(t − τ(t), x)) + GT (u(t, x))QG(u(t, x))

−(1 − τ̇ (t))GT (u(t − τ(t), x))QG(u(t − τ(t), x))

}
dxdt

+

∫

Ω

δe−γu(t,x)dx + 2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(ui)dwj(t)dx

=

∫

Ω

{
2

n∑

i=1

piui

N∑

k=1

∂

∂xk

(
Dik

∂ui

∂xk

)
− uT (t, x)(PΓ + ΓT P − Λ)u(t, x)

−uT (t, x)Λu(t, x) + 2uT (t, x)PAG(u(t, x))

+2uT (t, x)PBG(u(t − τ(t), x)) + GT (u(t, x))QG(u(t, x))

−(1 − τ̇ (t))GT (u(t − τ(t), x))QG(u(t − τ(t), x))

}
dxdt

+

∫

Ω

δe−γu(t,x)dx + 2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(ui)dwj(t)dx

≤

∫

Ω

{
2

n∑

i=1

piui

N∑

k=1

∂

∂xk

(
Dik

∂ui

∂xk

)
− uT (t, x)(PΓ + ΓT P − Λ)u(t, x)

−GT (u(t, x))ΛL−2G(u(t, x)) + 2uT (t, x)PAG(u(t, x))

+2uT (t, x)PBG(u(t − τ(t), x)) + GT (u(t, x))QG(u(t, x))

−(1 − τ̂ )GT (u(t − τ(t), x))QG(u(t − τ(t), x))

}
dxdt

+

∫

Ω

δe−γu(t,x)dx + 2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(ui)dwj(t)dx. (3.7)
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From the boundary condition (2.2), we get

∫

Ω

n∑

i=1

N∑

k=1

ui
∂

∂xk

(
Dik

∂ui

∂xk

)
dx =

n∑

i=1

∫

Ω

ui∇
(
Dik

∂ui

∂xk

)N

k=1
dx

=

n∑

i=1

∫

Ω

∇

(
uiDik

∂ui

∂xk

)N

k=1

dx

−
n∑

i=1

∫

Ω

(
Dik

∂ui

∂xk

)N

k=1
∇uidx

=
n∑

i=1

∫

∂Ω

(
uiDik

∂ui

∂xk

)N

k=1

dx

−
n∑

i=1

N∑

k=1

∫

Ω

Dik

( ∂ui

∂xk

)2

dx

= −
n∑

i=1

N∑

k=1

∫

Ω

Dik

( ∂ui

∂xk

)2

dx

≤ 0 (3.8)

in which ∇ =
(

∂
∂x1

, ∂
∂x2

, · · · , ∂
∂xN

)T

is the gradient operator, and

(
Dik

∂ui

∂xk

)N

k=1
=
(
Di1

∂ui

∂x1
, Di2

∂ui

∂x2
, · · · , Dil

∂ui

∂xN

)T

.

Substituting (3.7) into (3.6), it follows that

dV (u(t), t) ≤

∫

Ω

[
ZT

1 (t, x)Θ1Z1(t, x)

]
dxdt +

∫

Ω

δe−γu(t,x)dx

+2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(ui)dwj(t)dx

≤ λmax(Θ1)

∫

Ω

[
u2(t, x) + G2(u(t, x)) + G2(u(t − τ(t), x))

]
dxdt

+

∫

Ω

δdx + 2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(ui)dwj(t)dx, (3.9)

where

Z1(t, x) =
[
uT (t, x) GT (u(t, x)) GT (u(t − τ(t), x))

]T

,

Θ1 is shown in (3.2).
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Taking α ∈ (0,−λmax(Θ1)) and applying Itô’s formula once again we have that

d
[
eαtV (u, t)

]
= eαt

[
αV (u, t)dt + dV (u, t)

]

≤ αeαt

∫

Ω

[
max(pi)

α
u2(t, x) + τ∗‖Q‖G2(u(t, x))

]
dxdt

+eαt

[
λmax(Θ1)

∫

Ω

(
u2(t, x) + G2(u(t, x))

+G2(u(t − τ(t), x))
)
dxdt

+

∫

Ω

δdx + 2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(ui)dwj(t)dx

]
. (3.10)

Integrating (3.10) from 0 to T, we obtain

eαT V (u, T ) ≤ ρ +
(
λmax(Θ1) + α

max(pi)

α

) ∫

Ω

∫ T

0

eαtu2(t, x)dtdx

+
(
λmax(Θ1) + τ∗‖Q‖

)∫

Ω

∫ T

0

eαtG2(u(t, x))dtdx

+λmax(Θ1)

∫

Ω

∫ T

0

eαtG2(u(t − τ(t), x))dtdx + M(T ), (3.11)

where
ρ =

∫
Ω |φ(x)|2dx,

M(T ) = 2
∫
Ω

∫ T

0 eαt
n∑

i=1

piui(t, x)
m∑

j=1

σij(ui(t, x))dwj(t)dtdx +
∫
Ω δTdx.

Obviously, M(T ) is a continuous martingale satisfying Lemma 2.1. From Lemma 2.1,
there exits C > 0 such that

eαT V (u, T ) ≤ C < ∞. (3.12)

Thus, from Definition 2.1, we know that the system (2.1) is globally exponentially
stable in mean square, and the mean square Lyapunov exponential estimate (3.3)
holds. �

Theorem 3.2. Suppose (H1)− (H3) hold. Assume that there exist a pair of positive
constants δ and γ such that

traceσT (u(t, x))σ(u(t, x)) ≤ δe−γu(t,x). (3.13)

Assume also that there exists a positive definite matrix Q and positive diagonal ma-
trices P, Λ such that

Θ2 =

[
(1, 1) PB

BT P −(1 − τ̂ )Q

]
< 0, (3.14)
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where (1, 1) = −PΓ − ΓT P + PAAT P + LT L + LT QL, Γ = diag(r1, r2, · · · , rn),
L = diag(l1, l2, · · · , ln). Then the distributed parameter type Cohen-Grossberg neural
network (2.1) with damped stochastic disturbance is globally exponentially stable in
mean square, and the mean square Lyapunov exponential estimate is:

lim
T→+∞

1

T
log(‖u(T, x)‖2) ≤ −α. (3.15)

Proof. We still consider the Lyapunov functional V (u, t) used in Theorem 3.1. Ap-
plying the Itô’s formula to V (u(t), t) and using the assumptions we derive that:

dV (u, t) ≤

∫

Ω

{
2

n∑

i=1

piui

N∑

k=1

∂

∂xk

(
Dik

∂ui

∂xk

)

−uT (t, x)(PΓ + ΓT P − Λ)u(t, x) − GT (u(t, x))ΛL−2G(u(t, x))

+2uT (t, x)PAG(u(t, x)) + 2uT (t, x)PBG(u(t − τ(t), x))

+GT (u(t, x))QG(u(t, x))

−(1 − τ̂ )GT (u(t − τ(t), x))QG(u(t − τ(t), x))

}
dxdt

+

∫

Ω

δe−γu(t,x)dx + 2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(ui)dwj(t)dx. (3.16)

By Lemma 2.2, we obtain the following inequality

2uT (t, x)PAG(u(t, x)) ≤ uT (t, x)PAAT Pu(t, x) + GT (u(t, x))G(u(t, x))

≤ uT (t, x)(PAAT P + LT L)u(t, x). (3.17)

Substituting (3.8) and (3.17) into (3.16), we get

dV (u, t) ≤

∫

Ω

uT (t, x)
(
− PΓ − ΓT P + PAAT P + LT L + LT QL

)
u(t, x)dx

+

∫

Ω

δe−γu(t,x)dx +

∫

Ω

2uT (t, x)PBG(u(t − τ(t), x))dx

−

∫

Ω

(1 − τ̂ )GT (u(t − τ(t), x))QG(u(t − τ(t), x))dx

+2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(ui)dwj(t)dx

≤ −

∫

Ω

ZT
2 (t, x)Θ2Z2(t, x)dx +

∫

Ω

δe−γu(t,x)dx

+2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(ui)dwj(t)dx, (3.18)

where Z2(t, x) =
[
uT (t, x) GT (u(t − τ(t), x))

]T

.
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The following proof is similar to Theorem 3.1. We omit it and the proof is
completed. �

In the following part, we shall study the mean square exponential stability of
distributed parameter type Cohen-Grossberg neural network (2.1) when the stochastic
disturbance is linear, i.e.,

dui(t, x) =

[
− ci(ui(t, x))

(
di(ui(t, x)) −

N∑

k=1

∂

∂xk

(
Dik

∂ui

∂xk

)
−

n∑

j=1

aijgj(uj(t, x))

−

n∑

j=1

bijgj(uj(t − τj(t), x))

)]
dt +

m∑

j=1

σij(t)ui(t, x)dwj(t). (3.19)

Similarly, we can obtain the following theorem.

Theorem 3.3. Suppose (H1)− (H3) hold. Assume that there exist a pair of positive
constants δ and γ such that

traceσT (t)σ(t) ≤ δe−γt. (3.20)

Assume also that there exists a positive definite matrix Q and positive diagonal ma-
trices P, Λ such that

Θ3 =



−2PΓ + Λ + δI PA PB

AT P Q − ΛL−2 0
BT P 0 −(1 − τ̂ )Q


 < 0, (3.21)

where Γ = diag(r1, r2, · · · , rn), L = diag(l1, l2, · · · , ln). Then the neural network
(3.19) is globally exponentially stable in mean square, and the mean square Lyapunov
exponential estimate is:

lim
T→+∞

1

T
log(‖u(T, x)‖2) ≤ −α. (3.22)

Proof. The foregoing proofs are similar to Theorem 3.1. From (3.20), we have

∫

Ω

trace(σ(t)u(t, x))T (σ(t)u(t, x))dx ≤

∫

Ω

n∑

i=1

u2
i (t, x) traceσT (t)σ(t)dx

≤

∫

Ω

δe−γt
n∑

i=1

u2
i (t, x)dx

≤

∫

Ω

δ

n∑

i=1

u2
i (t, x)dx. (3.23)
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Therefore, combining (3.7)-(3.8) and (3.23), we derive

dV (u(t), t) ≤

∫

Ω

[
ZT

1 (t, x)Θ3Z1(t, x)

]
dxdt

+2

∫

Ω

n∑

i=1

piui

m∑

j=1

σij(t)uidwj(t)dx (3.24)

The following proof is similar to Theorem 3.1. We omit it and the proof is completed.
�

Consider the following stochastic neural network

dui(t, x) =

[
− ci(ui(t, x))

(
di(ui(t, x)) − βi(t)∆ui(t, x) −

n∑

j=1

aijgj(uj(t, x))

−
n∑

j=1

bijgj(uj(t − τj(t), x))

)]
dt +

m∑

j=1

σij(ui(t, x))dwj(t), (3.25)

where the boundary condition and initial condition are shown in (2.2)-(2.4); βi(t) > 0
(t > 0, i = 1, 2, · · · , n) are continuous functions with low boundedness; ∆ is the
Laplace operator.

Theorem 3.4. Suppose (H1)− (H3) hold. Assume that there exist a pair of positive
constants δ and γ such that

traceσT (u(t, x))σ(u(t, x)) ≤ δe−γu(t,x). (3.26)

Assume also that there exists a positive definite matrix Q and positive diagonal ma-
trices P, Λ such that

Θ1 =



−2PΓ + Λ PA PB

AT P Q − ΛL−2 0
BT P 0 −(1 − τ̂ )Q


 < 0, (3.27)

where Γ = diag(r1, r2, · · · , rn), L = diag(l1, l2, · · · , ln). Then the distributed param-
eter type Cohen-Grossberg neural network (3.25) with damped stochastic disturbance
is globally exponentially stable in mean square, and the mean square Lyapunov expo-
nential estimate is:

lim
T→+∞

1

T
log(‖u(T, x)‖2) ≤ −α. (3.28)

In fact, from Green formula and Robin boundary condition (2.3), we get that
∫

Ω

∆ui(t, x)ui(t, x)dx =

∫

∂Ω

[
ui(t, x)

∂ui(t, x)

∂n
− ui(t, x)

∂ui(t, x)

∂n

]
ds

−λ0

∫

Ω

u2
i (t, x)dx ≤ 0. (3.29)
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Then using the similar proofs of Theorem 3.1, Theorem 3.4 can be obtained.

Remark 3.1. Stochastic neutral networks have been widely studied in the literature,
see [16, 19-22]. However, all of them considered the stability stochastic neutral net-
works without distributed parameter and damped. Moreover, if ci(ui(t, x)) ≡ 1 and
di(ui(t, x)) is linear, i.e., di(ui(t, x)) = riui(t, x), then the system (2.1) without dis-
tributed parameter has been studied in [19]. Note that different from the commonly
used matrix norm theories (such as the M-matrix method), LMIs can be easily solved
by using the Matlab LMI toolbox, and no tuning of parameters is required [25]. So
the results obtained in this paper improve and extend the earlier works.

4. One numerical example

A simple example is presented here in order to illustrate the usefulness of our
main results.

Example 4.1. Consider a two-neuron Cohen-Grossberg neural network with damped
stochastic disturbance:

dui(t, x) =

[
− ci(ui(t, x))

(
di(ui(t, x)) −

∂

∂x

(
Di

∂ui

∂x

)
−

n∑

j=1

aijgj(uj(t, x))

−

n∑

j=1

bijgj(uj(t − τj(t), x))

)]
dt + σi(ui(t, x))dw(t), i = 1, 2, (4.1)

for n = 2, where D1 = t2x4, D2 = 2x2, c1(u1(t, x)) = 2 + g(u1(t, x)), c2(u2(t, x)) =
2+g(u2(t, x)), d1(u1(t, x)) = 6u1(t, x), d2(u2(t, x)) = 5u2(t, x), σ1(u1(t, x)) = e−u(t,x),

σ2(u2(t, x)) = 2e−u(t,x), τ1(t), x) = τ2(t), x) = 0.5 sin(t), g(u) = 0.5(|u + 1| − |u − 1|).
So note that α = 1, α = 3,

Γ =

(
6 0
0 5

)
, A =

(
3 −2
−3 1

)
, B =

(
2 1
1 1

)
, L =

(
1 0
0 1

)
, τ̂ = 0.5.

So we have
traceσT (u(t, x))σ(u(t, x)) ≤ 5e−2u(t,x). (4.2)

In Theorem 2.1, by solving the LMI (3.2) using the Matlab Toolbox, a feasible
solution is

P = 10−10 ×

(
0.7399 0

0 0.7399

)
,

Q = 10−9 ×

(
0.1423 0.1035
0.1035 0.1882

)
,
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Λ = 10−9 ×

(
0.4138 0

0 0.4138

)
.

Therefore, all conditions of Theorem 3.1 are satisfied, which implies the Cohen-
Grossberg neural network (4.1) is globally asymptotically stable in mean square.

Using Theorem 3.3 with δ = 5, by solving the LMI (3.21) using the Matlab
Toolbox, a feasible solution is

P =

(
0.1083 0

0 0.1083

)
,

Q =

(
2.7905 0

0 2.7905

)
,

Λ =

(
4.4909 0

0 4.4909

)
.

Therefore, all conditions of Theorem 3.3 are satisfied, which implies the Cohen-
Grossberg neural network (4.1) is globally asymptotically stable in mean square. How-
ever, when A ≡ 0, Di ≡ 0, α1r1 = 6 < L1(α1|b11| + α2|b21|) = 9, so Theorem 3.5 in
[5] is not applicable.

5. Conclusions

In this paper, the mean square exponential stability problem is considered for a
class of distributed parameter type Cohen-Grossberg neural networks with damped
stochastic disturbance. On the basis of the LMI approach, and also the Lyapunov
functional method combined with the Fubini theorem and conducting the stochastic
analysis, several stability criteria are derived. The proposed criteria can be checked
readily by using some standard numerical packages, and improve and extend the
earlier works.
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