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Abstract. Let {Xn, n ≥ 1} be a sequence of i.i.d positive valued asym-
metric stable random variables with a common distribution function F with

index α, 0 < α < 1. The present work intends to study the non-trivial limit

behaviour for properly normalized delayed random sums in the power nor-
malization and study the number of boundary crossing random variables as

an application.

1. Introduction

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed
(i.i.d.) positive valued asymmetric stable random variables (r.v.s) with a common

distribution function F with index α, 0 < α < 1. Set Sn =
n∑

k=1

Xk, n ≥ 1 and

Tan
=

n+an∑
k=n+1

Xk = Sn+an
− Sn, where an, n ≥ 1, is the non-decreasing function

of the positive integers of n such that 0 < an ≤ n for all n and an

n ∼ bn, where
bn is non-increasing. The sequence {Tan , n ≥ 1} is called a (forward) delayed sum
sequence (see Lai(1973)).

Let {Ln, n ≥ 1} be a sequence of non-decreasing positive integer r.v.s., with
finite mean, independent of {Xn, n ≥ 1} such that Ln

n is non-increasing and

lim
n→∞

Ln

n = 1 a.s. Now parallel to the delayed sums Tan
, Divanji(2017) intro-

duced delayed random sums as MLn
=

n+Ln∑
k=n+1

Xk = Sn+Ln
− Sn, and studied the

non-trivial limit behavior of properly normalized delayed random sums under some
conditions on Ln.

We foresee that the delayed random sums theory will have a possible applica-
tions in finance by taking X ′

is as price changes or log returns, which are separated
by random waiting times Ln between trades. Another possible application has
been stated by Sreehari and Chen(2020) in control charts with censored samples
where the sample size on each occasion will be a random number.

Laws of iterated logarithm (LIL) for heavy-tailed r.v.s are different from those
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r.v.s attracted to the normal law. Here we have used power normalization and
the resulting limit theorem is called Chover’s form of LIL (see Chover(1966)). For
further developments in Chover’s form of LIL, see Divanji(2004).

Lai(1973) studied the behavior of classical LIL for delayed sums {Tan
, n ≥ 1},

with finite variance, at different a′ns. For independent, but not identically dis-
tributed strictly positive stable r.v.s, Vasudeva and Divanji(1993) studied the non-
trivial limit behavior for delayed sums and Sreehari and Chen(2020) extended to
a more general class of stable r.v.s. Also they studied a non-trivial limit behavior
for delayed random sums.

Associated with the laws of iterated logarithm or strong laws, the study of
the r.v giving the number of boundary crossings has become very vital, since this
study reflects the precision of the laws of iterated logarithm or strong laws. This
boundary crossing problems have been attracted and studied by various authors
such as Slivka and Savero(1970), Slivka(1969) and so on.

Let {Xn, n ≥ 1} be a sequence of i.i.d. r.v.s with a common d.f. F with

mean µ and variance σ2. Let Sn =
n∑

k=1

Xk, n ≥ 1. Let {dn, n ≥ 1} be any se-

quence of real constants. We say that {dn, n ≥ 1} belongs to the upper class, if
P (Sn > dni.o) = 0 and to the lower class, if P (Sn > dni.o) = 1. Suppose that
{dn, n ≥ 1} belongs to the upper class. It would be interesting to find the bound-
ary crossing probability P (Sn ≥ dn, for some n ≥ m > 0). Such boundary crossing
probabilities have a statistical application in power one tests of one-sided hypothe-
ses in confidence sequences for the unknown parameters of parametric families of
distributions. See for example Lai and Lan(1976) and references therein.

In brief, if b(n, ε) = (1 + ε)(2n log log n)1/2,for n ≥ 3, then by classic LIL due
to Hartman and Wintner(1941) asserts that with probability one, the inequality
|Sn − nµ| ≥ b(n, ε) will hold for finitely many n-values when ε > 0 and for infin-
itely many n-values when ε < 0. Let {Yn(ε), n ≥ 3} be a sequence of indicator
r.v.s defined by,

Yn(ε) =

{
1, |Sn − nµ| ≥ σb(n, ε)
0, otherwise

Let {Nm(ε),m ≥ 3} be the corresponding sequence of partial sums, i.e.,

Nm(ε) =
m∑

n=3
Yn(ε), for m ≥ 3 and observe that N∞(ε) =

∞∑
n=3

Yn(ε) which denotes

the number of times the r.v |Sn−nµ| crosses or exceeds the boundary b(n, ε). Also

if N∞(ε) =
∞∑

n=3
Yn(ε) , then the LIL asserts that P (N∞(ε) < ∞) = 1 for ε > 0,

while P (N∞(ε) = ∞) = 0 for ε < 0.Which says that if ε > 0, N∞(ε) is a proper r.v
or equivalently N∞(ε) has proper distribution. Notice that E(N0

∞) = P (N∞(ε) <
∞) = 1. The 0th moment of N∞(ε) exists and hence the question arises whether
N∞(ε) possesses any moments of positive order. In the last section, we study the
moments of these boundary crossing r.v.s related to LIL cosidered above.

The present work intends to obtain the non-trivial limit behavior to properly
normalized delayed random sums in the power normalization and study the num-
ber of boundary crossings for the non-trivial limit behavior for delayed random
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sums.

Throughout this chapter, C, ε(small), k(integer) and n(integer), with or
without a suffix or super suffix stand for positive constants, whereas a.s. and i.o.
mean almost sure and infinitely often respectively and g(x) ∼ h(x) to stand for

lim
x→∞

g(x)
h(x) = 1 a.s.

In the next section, we present the main result. Some boundary crossings
problem for delayed random sums is obtained in the last section.

2. A Non-trivial limit behavior of delayed random sums

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of i.i.d. positive valued asymmet-
ric stable r.v.s., with a common d.f. F, with index α, 0 < α < 1. Let {Ln, n ≥ 1} be
a sequence of non-decreasing positive integer r.v.s. with finite mean, independent
of {Xn, n ≥ 1} such that Ln

n is non-increasing and lim
n→∞

Ln

n = 1 a.s. Let γn =

(log n
Ln

+ log log n). Then lim inf
n→∞

{
MLn

L
1/α
n

}1/γn

= 1a.s., where MLn
= Sn+Ln

− Sn.

Proof. To prove the assertion, it is enough to show that for any sufficiently small
ε > 0,

P

(
MLn ≤ L1/α

n

(
n

Ln
log n

)−ε

i.o.

)
= 0 (2.1)

and

P

(
MLn

≤ L1/α
n

(
n

Ln
log n

)ε

i.o.

)
= 1. (2.2)

From the condition lim
n→∞

Ln

n = 1 a.s., we have for any given ε1 > 0, we can find

some positive integer d such that
(1− ε1)n ≤ [(1− ε1)n] ≤ Ln ≤ [(1 + ε1)n] ≤ (1 + ε1)n,

for every n ≥ d, where [x] denotes the largest integer contained in x. Which implies

un < Ln < vn a.s., (2.3)

where un = (1−ε1)n and vn = (1+ε1)n. Using (2.3), one can find some constants
C1(> 0) and C2(> 0) such that,

L1/α
n

(
n

Ln
log n

)−ε

≤ C1n
1/α(log n)−ε (2.4)

and

L1/α
n

(
n

Ln
log n

)ε

≤ C2n
1/α(log n)ε (2.5)

where C1 = (1− ε1)
ε(1 + ε1)

1/α and C2 = (1− ε1)
−ε(1 + ε1)

1/α. Using (2.4) and
(2.5) in (2.1) and (2.2), we get,

P
(
Mvn ≤ C1n

1/α(log n)−εi.o.
)
= 0, where Mvn = Sn+vn − Sn (2.6)
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and

P
(
Mun

≤ C2n
1/α(log n)εi.o.

)
= 1, where Mun

= Sn+un
− Sn (2.7)

The fact that Xn’s are positive asymmetric stable r.v.s, implies that
Mun

u
1/α
n

and X1 are identically distributed. Observe that C2n
1/α(logn)ε

u
1/α
n

= C2n
1/α(logn)ε

((1−ε1)n)1/α
=

C3(log n)
ε → ∞, as n → ∞, where C3 = C2

(1−ε1)1/α
> 0 and hence we have,

P
(
Mun ≤ C2n

1/α(log n)ε
)
= P (X1 ≤ C3(log n)

ε)

⇔ lim
n→∞

P
(
Mun ≤ C2n

1/α(log n)ε
)
= 1

(2.8)

Notice that,

P
(
Mun

≤ C2n
1/α(log n)ε

)
= P

( ∞⋂
n=1

∞⋃
m=n

Mum
≤ C2m

1/α(logm)ε
)

= lim
n→∞

P

( ∞⋃
m=n

Mum
≤ C2m

1/α(logm)ε
)

≥ lim
n→∞

P
(
Mun

≤ C2n
1/α(log n)ε

)
From (2.8), we now get P

(
Mun ≤ C2n

1/α(log n)εi.o.
)
= 1. Hence proof of (2.7) is

completed and proof for (2.2) follows from (2.7).

Now to prove (2.6), we define subsequence nk =
[
ek

b
]
, 0 < b < 1, k ≥ 1. Let

E1,n, E2,k and E3,k denote the events,

E1,n = {Mvn ≤ C1n
1/α(log n)−ε, E2,k =

{
inf

nk≤n≤nk+1

Mvn ≤ C1n
1/α(log n)−ε

}
and E3,k =

{
Snk+vnk

− Snk+1
≤ C1n

1/α
k+1(log nk+1)

−ε
}
.

Note that {E1,n i.o} ⊂ {E2,k i.o} ⊂ {E3,k i.o}.

Hence, in order to prove(2.6) it is enough to prove that P (E3,ki.o) = 0. (2.9)

We have, P (E3,k) = P
(
Snk+vnk

− Snk+1
≤ C1n

1/α
k+1(log nk+1)

−ε
)
. The fact that

Xn’s are i.i.d. positive asymmetric stable r.v.s implies that,
Snk+vnk

−Snk+1

(nk+vnk
−nk+1)1/α

and X1 are identically distributed and hence, P (E3,k) = P (X1 ≤ hk), where

hk =
C1n

1/α
k+1(lognk+1)

ε

(nk+vnk
−nk+1)1/α

. Note that vnk
= (1+ ε1)nk and nk =

[
ek

b
]
and using this

fact, we have
n
1/α
k+1

(nk+vnk
−nk+1)1/α

=
n
1/α
k+1

(nk+(1+ε1)nk−nk+1)1/α
= 1(

(2+ε1)nk
nk+1

−1
)1/α

Consider nk

nk+1
= ek

b

e(k+1)b
→ 1, as k → ∞. Therefore

n
1/α
k+1

(nk+vnk
−nk+1)1/α

→
1

((2+ε1)−1)1/α
= 1

(1+ε1)1/α
< 1 = (1− ε2) (say), where b < 1, α < 1 and ε < 1 which

yields that hk ≤ C4(1− ε2)(log nk)
−ε, where C4 > 0.

Now using Theorem 1 of Feller(1966), page 448, there exists a constant C5 > 0
such that
P (E3,k) = P (X1 ≤ hk) ≤ C5 exp{−(1− ε2)(log nk)

−ε)−α}
≤ C5 exp{−(1− ε2)

−α(log nk)
αε)}.
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Since (1− ε2)
−α > 1 = (1 + ε3) (say), for some ε3 > 0,

P (E3,k) ≤ C5 exp{−(1 + ε3)(log nk)
αε)}.

We now claim that, for some ε4 > 0, exp{(1 + ε3)(log nk)
αε)} = o

(
1

(lognk)(1+ε4)

)
,

which implies, exp{−(1+ε3)(lognk)
αε)}

1

(log nk)(1+ε4)

= (lognk)
(1+ε4)

exp{(1+ε3)(lognk)αε)} .

From the elementary knowledge on limits, we know that logn
en → 0 as n → ∞ and

from the fact that (log nk)
(1+ε4) → ∞ as k → ∞ immediately implies that

(lognk)
(1+ε4)

exp{(1+ε3)(lognk)αε)} → 0 as k → ∞
and the claim is justified. Hence there exists C6(> C5) such that

P (E3,k) ≤
C5

(log nk)(1+ε4)
=

C5

kb(1+ε4)
, since nk =

[
ek

b
]

and b < 1. (2.10)

Consequently, the series,
∑
k≥1

P (E3,k) < ∞, for sufficiently small ε4(> 0), which in

turn establishes (2.9) by appealing to Borel - Cantelli lemma and hence proof of
(2.1) and (2.6) follows from (2.9). Thus, the proof of the Theorem is completed. □

3. Study of the number of boundary crossings related to the above LIL

Here we study the existence of moments of the number of boundary cross-
ing r.v.s related to the above non-trivial limit behavior for properly normalized
delayed random sums in the power normalization.

A similar study of the moments of N∞(ε) is made for LIL results in the pro-
cess. We express theorems of Slivka(1969) and Slivka and Savero(1970) in a more
generalized form as a lemma, so that we can appeal to this lemma as and when
needed.

Lemma 3.1. Let {ξn, n ≥ 1} be a sequence of r.v.s and {An, n ≥ 1} be a sequence
of sets on the real line ℜ such that P (ξn ∈ Ani.o) = 0. Let {I(An), n ≥ 1} be a
sequence of indicator r.v.s which are defined by,

I(An) =

{
1, if ξn ∈ An

0, otherwise

and let {Nm,m ≥ 1} be the corresponding sequence of partial sums, i.e., Nm =
m∑

n=1
I(An). From N∞ =

∞∑
n=3

In(An), we know that P (N∞ < ∞) = 1 or N∞ is a

proper r.v. Then for any λ > 0, ENλ
∞ < ∞ whenever

∞∑
n=1

nλ−1P (ξn ∈ An) < ∞.

(The proof follows on similar lines of Slivka(1969) and Slivka and Savero(1970)
and hence omitted).

Theorem 3.2. ENλ
∞ < ∞ whenever

∞∑
n=3

nλ−1P

(
MLn

≤ L
1/α
n

(
n
Ln

log n
)−ε

)
< ∞, for all 0 < λ ≤ 1 and ε > 0.

Proof. Define for any ε > 0,
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Yn(ε) =

{
1, MLn ≤ L

1/α
n

(
n
Ln

log n
)−ε

0, otherwise

Let Nm(ε) be the partial sum sequence of Yn(ε) . i.e.,
m∑

n=1
Yn(ε), for m ≥ 3,

observe that equation (2.1) of the Theorem (2.1), Nm(ε) is a proper r.v. Here
we show that all the moments in λ ∈ (0, 1] are finite for this proper r.v. for
which we establish the theorem for λ = 1, EN∞ < ∞ and then claim that the
existence of lower moments follows from higher moments . From the above Lemma

3.1 , identifying ξn with MLn
, An with

(
−∞, L

1/α
n

(
n
Ln

log n
)−ε

]
, and N∞ with

N∞(ε). By statement (2.1) of Theorem 2.1, we have EN∞(ε) < ∞ whenever
∞∑

n=3
P

(
MLn ≤ L

1/α
n

(
n
Ln

log n
)−ε

)
< ∞. From (2.10) of Theorem 2.1, we can

find some constant C6 > 0 such that
∞∑

n=3
P

(
MLn ≤ L

1/α
n

(
n
Ln

log n
)−ε

)
< C6

∞∑
k=k4

1
kb(1+ε4) < ∞, where b < 1 and

nk =
[
ek

b
]
, which proves that EN∞(ε) < ∞, for λ = 1 and therefore ENλ

∞ < ∞,

for all 0 < λ ≤ 1. Hence the proof the Theorem is completed. □
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